University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 42.7E
To determine
The wavelength and frequency of the photon absorbed by water when it undergoes a rotational-level transition from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a cavity with a volume of 1cc and the
frequency range 0 to 473 THz. Assume a
refractive index of unity. a. What is the total
number of optical modes contained in this
cavity? b. What is the mode density
(modes/k/m3) at 473 THz? c. If a Neon atom is
placed in this cavity which has an emission at
473 THz with a 16 MHz linewidth, how many
modes can the atom couple to? d. How small
would the cavity have to be in order to have
the number of modes coupled to equal 100?
H1
M2
Chapter 42 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Knowledge Booster
Similar questions
- A GaAs semiconductor laser has a wavelength of 850 nm. The length of the laser cavity is 800 µm. Calculate the mode number.q. frequency of the emission. ● The separation between modes in frequency. ● ● What might be the consequence if the operating temperature fluctuates?arrow_forward2arrow_forwardThe wavelength of the emitted photon from the hydrogen molecule H2 is 2.30 μm (micrometers) when the vibrational quantum number decreases by one. What is the effective "spring constant" for the H2 molecule in N/m ?What is the "zero point" energy (in eV) of the molecular vibration?arrow_forward
- A hypothetical molecular laser works in 3 level energy system. The energies of the levels. E₁, E2, and E3 are 0 eV, 0.18 eV and 0.30 eV respectively. If the laser transition takes place between the levels E₂ and E₁ find the (1) wavelength of radiation that excites the molecules for the laser action. 1arrow_forward3arrow_forwarda. Determine the maximum value of the energy gap that a semiconductor, used as a photoconductor, can have if it is to be sensitive to yellow light (600 nm). b. A photodetector whose area is 5 × 10* cm’ is irradiated with yellow light whose intensity is 2 mW cm". Assuming that each photon generates one electron-hole pair, calculate the number of pairs generated per second. c. From the known energy gap of the semiconductor GaAs (E, = 1.42 eV), calculate the primary wavelength of photons emitted from this crystal as a result of electron-hole recombination. d. Is the above wavelength visible? e. Will a silicon photodetector be sensitive to the radiation from a GaAs laser? Why?arrow_forward
- Suppose the bond in a molecule is broken by photons of energy 5.8 eV. ▾ Part A Determine the frequency of these photons. Express your answer with the appropriate units. Templates Symbols undo' rego Teset keyboard shortcuts Help A Units Request Answer Part B Determine the wavelength of these photons. Express your answer with the appropriate units. Templates Symbols undo rego Teser keyboard shortcuts Help Units f= Value Submit A= Value Submit Request Answerarrow_forwardhttps://www.compadre.org/PQP/applications/prob14_3.cfm Two potential energy curves are shown (given in eV and distance is given in Bohr radii) for two different molecules. Determine which molecule requires the greater amount of energy to be disassociated and find that energy.arrow_forwardTake h to have an exact value of 6.63 x 10-34 J-s for significant figure purposes, and use hc = 1.24 x 10³ eV nm (three significant figures). Q Search Part A If the electron in a hydrogen atom is to make a transition from the first excited state to the second excited state, what frequency of photon is needed? 5| ΑΣΦ xa Xb Part B a b f= 7.55 10¹4 √x vx X Submit Previous Answers Request Answer X |X| X Incorrect; Try Again; 5 attempts remaining X.10n X end ? Hz R Insert 7:44 PM 12/7/2022 deletearrow_forward
- Compare the energies of photons emitted by two radio stations, operating at 92 MHz (FM) and 1500 kHz (MW)? A 7.25x10-s M solution of potassium permanganate has a transmittance of 44.1% when measured in a 2.10 cm cell at a wavelength of 525 nm. Calculate a. the absorbance of this solution and b. the molar absorptivity of KMNO4arrow_forwardTrue or False Questions : Non-conducting materials can be studied by scanning tunneling microscope(STM). 0 True 0 False Backscattered electron detection should be employed to detect different phases in a material. 0 True 0 False Backscattered electrons are analyzed by TEM. 0 True 0 False IR spectroscopy is used to determine functional groups/bonding in molecules. 0 True 0 False Backscattered electrons have lower energy than secondary electrons. 0 True 0 False Secondary electrons are used in SEM. 0 True 0 False Energy dispersive spectroscopy (EDS) analyzes x-rays. 0 True 0 False XRD peaks broaden as nanoparticle size decreases. 0 True 0 False X-ray diffraction (XRD) peak position shifts to higher 29 angles as the distance between adjacent crystal planes increases. 0 True 0 False scanning electron microscopy (SEM) exhibits higher resolution than transmission electron microscopy (TEM) 0 True O False The G-band in a Raman spectrum of CNTs is attributed to defects. 0 True O False EDS…arrow_forward3 4. The aside curve is the optical transmission spectrum of CdS film as a function of wavelength. The transmission behavior of the film clearly indicates its high value of transmission, 80% above 530 nm wavelength. 100- 80- 60니 40- 20- 0- 400 500 600 700 800 900 Wavelength (nm) a. Roughly estimate the maximum wavelength of the absorbed photon, and the energy gap of the CdS film? b. Assuming constant value of T at 1 2 530 nm, Calculated the reflectivity R, refractive index n and the absorption coefficient a if the films' thickness is 220 nm. Transmission (%)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning