University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 42.27E
To determine
Position of the Fermi level relative to the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Silicon is doped with phosphorus atoms (column V of Mendeleev table) with a concentration of
1018 cm-3
a- What is, at 27 °C, the electron density in doped Si. Use this result to derive the hole density.
Which type of semiconductor is obtained?
b- Calculate, at 27 °C, the position of the Fermi level EF and plot the band diagram.
The Fermi energy is the highest energy of an electron at 0K. At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 1% above the Fermi energy of 5.5 eV?
The Fermi energy is the highest energy of an electron at 0k.At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 2% above the Fermi energy of 5.5eV?
Chapter 42 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Knowledge Booster
Similar questions
- If the election number density (N/V) of a metal increases by a factor 8, what happens to the Fermi energy (EF)?arrow_forwardTime left In a phosphorous-doped (n-type) silicon, the Fermi level is shifted upward 0.1 eV. What is the probability of an electron's being thermally promoted to the conduction band in silicon (Eg = 1.107 eV at 25 deg C? Your answer must be to 2 significant figures or will be marked wrong. Nearrow_forwardSuppose you need to design an n-type silicon semiconductor with a conductivity of 160 (N ·m)-1 at 300K. The atomic weight of silicon is 28.09 g/mol, and the density is 2.33g/cm³. The mobility of electrons/holes in silicon at different doping concentrations under different temperature is shown in the following figure. 0.1 102 102 10, 10 0.01 0.01 A kgou aoarrow_forward
- A pure semiconductor has a band gap of 1.25 eV. The effective masses of electron and hole are 0.1me and 0.5me respectively, where me is the free electron mass. The carrier scattering time is 0.2 ps (Pico seconds). Find the following at a temperature of 300 K(a) Concentration of electrons and holes(b) Fermi energy(c) Electron and hole mobilities(d) Electrical conductivityarrow_forwardStarting with the Fermi energy given in Table , estimate the number of conduction electrons per atom for aluminum, which has density 2.70 x 103 kg/m3 at T = 300 Karrow_forwardThe Fermi energy of silver is µF = 5.51 eV. a) Calculate µ(7) of Ag at T = 400 and 4000 K. b) What is the rms speed of electrons at 0 K? What is the Fermi velocity? c) Plot the Fermi function at 0 and 4000 K in one graph and discuss the differences.arrow_forward
- Consider a sample of GaAs at 300 K in which the Fermi level is 0.40 eV below the bottomof the conduction band. For the following questions, the Boltzmann approximation isvalid.a) What is the probability the energy state Ec is occupied by an electron?b) What is the probability a state E = 0.20 eV above the valence band is empty?c) What is the carrier concentration of electrons in this sample? Holes?arrow_forwardAt low temperatures, copper has a free-electron concentration n = 8.45 *1028 m-3. Using the free-electron model, find the Fermi energy for solid copper, and find the speed of an electron with a kinetic energy equal to the Fermi energy.arrow_forwardThe probability of an electron occupying a state 3kT above the Fermi energy in a particular semiconducting sample is 4.74 x 10-2. What is the probability of a hole occupying a state 3kT below the Fermi energy in the same sample?arrow_forward
- Silver melts at 961°C. At the melting point, what fraction of the conduction electrons are in states with energies greater than the Fermi energy of 5.5 eV?arrow_forwardSilicon atoms with a concentration of 7× 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T= 300 K: N. = 4.7 x 1017cm-3 and N, = 7 x 1018cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The acceptor concentration?arrow_forwardSilicon atoms with a concentration of 7x 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T = 300 K: N. = 4.7 x 1017 cm-3 and N, = 7 x 101cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The donor concentration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax