University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 42.18E
(a)
To determine
The maximum wavelength of a photon that can excite an electron from the top of the valence band to the bottom of the
(b)
To determine
At what region of the
(c)
To determine
To explain: How impurities in the diamond can cause the yellow color in most of the gem diamonds.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The forbidden energy bandgap of AIP is
2.43 eV. Determine the wavelength (in
nm) of an incident photon that can
interact with a valence electron and
elevate the electron into the conduction
band.
Oλ = 511 nm
Oλ = 419 nm
O λ = 882 nm
λ = 575 nm
However, the molecule we can encounter everyday continuously vibrates and interact with the surrounding causing its bond vector to vary slightly. According to a new spectroscopy analysis, the adjacent bond vectors was found to be
A = 0.82i + 0.99j + 0.84k
B = 1.09i + -1.01j + -0.97k
What is the angle (in degrees) between the bonds based on this new data?
1. An electron moving in a conjugated bond framework can be viewed as a particle in a
box. An externally applied electric field of strength & interacts with the electron in a
fashion described by the perturbation:
V(r) = ee (x - 1)
Where x is the position of the electron in the box, e is the electron charge, and Lis
the length of the box.
(a) Compute the first order correction to the energy
(b) The first order correction to the wave-function (compute only the
contribution to Y made by Y2)
Chapter 42 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Knowledge Booster
Similar questions
- What is the energy of an electron in the n=2 state for an gold atom, , in units of eV. E = [x] _________________ eVarrow_forward3. Atomic vibrations in a metal. Consider point ions of mass M and charge e immersed in a uniform sea of conduction electrons. The ions are imagined to be in stable equilibrium when at regular lattice points. If one ion is displaced a small distance r from its equilibrium position, the restoring force is largely due to the electric charge within the sphere of radius r centered at the equilibrium position. Take the number density of ions (or of conduction electrons ) as 3/(47R³), which defines R. (a) Show that the frequency of a single ion set into oscillation is @= (e²/MR³) ¹/2. (b) Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and some common sense, estimate the order of magnitude of the velocity of sound in metal.arrow_forwardWhat is the energy required to transit 1 mol of electrons from n= 2 to infinity? (h= 6.63x10 34 J.s., c = 3x108 m/s, RH = 1.07x107 m1, hcRH = 2.18x1018 J) %3Darrow_forward
- K:54)arrow_forwardhttps://www.compadre.org/PQP/applications/prob14_3.cfm Two potential energy curves are shown (given in eV and distance is given in Bohr radii) for two different molecules. Determine which molecule requires the greater amount of energy to be disassociated and find that energy.arrow_forwardfrom E-k curve, Q. 1; 3 Energy (eV) U GaAs ΔΕ 0.31 Valence band [111] O k (a) 1. Energy gap, Eg 2. Effective mass, m* Conduction band [100] Eg=1.42 eV Calculate the wavelength and energy of photon released when electron move from conduction band to valence band? What is the color of the light?arrow_forward
- 3.17 Figure P3.17 shows the parabolic E versus k relationship in the valence band for a hole in two particular semiconductor materials. Determine the effective mass (in units of the free electron mass) of the two holes. -0.08 Ey Ey-0.025 Ev-0.3 E(eV)+ 0k (ů) 0.08 Figure P3.17 | Figure for Problem 3.17.arrow_forwardQUESTION 11 into the Light pushes electrons from O Valence Band, Conduction Band O Conduction Band, Valence Band O PV Cell, Conduction Band if it has an energy of 1.12 eV. Conduction Band, PV Cell QUESTION 12 In the system is always connected to the grid. O Stand-alone PV System O Off-Grid PV System O Grid Tie PV Solar System O None of the abovearrow_forward2arrow_forward
- A/The volume density of atoms for a simple cubic lattice is 3 x 1022 cm. Assume that the atoms are hard spheres with each atom touching its nearest neighbor. Determine the lattice constant and the radium of the atom and APF. 15 M B/A th 0 051 ig diff oli caltarrow_forward1. An additiona layer was inserted in the middle of a 20 layer-pair dielectric stack of quarter-wave layers (titanium-dioxide & fused silica, initial medium: air, substrate: BK7 glass, n = 1.5, design wavelength 600 nm). Please numerically find the power reflection coefficient vs wavelength (visible & near infrared) for the following cases: 1) The additional layer is a quarter-wave layer from titanium dioxide. 2) The additional layer is a one-eighth-wave layer from aluminum oxide.arrow_forwardFor a K*- CH ion pair, attractive and repulsive energies EA and ER, respectively, depend on the distance between the ions r, according to 5.8 x 10-6 1.436 EA and ER For these expressions, energies are expressed in electron volts per K*- CH pair, and r is the distance in nanometers. a) If the net energy EN is just the sum of the two expressions above: EN = E, + ER, Find the values of ro and E, ? b) If curves of E, ER, and EN are plotted in given figure, compare the calculated values of ro and E, with that from the graph. 2 am 0.00 010 0.20 0.30 040 0.70 00 1.00 Interatomic Separation, nm Bonding Energy, eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning