
MyLab Math plus Pearson eText -- Standalone Access Card -- for Finite Mathematics & Its Applications (12th Edition)
12th Edition
ISBN: 9780134765723
Author: Larry J. Goldstein, David I. Schneider, Martha J. Siegel, Steven Hair
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.2, Problem 21E
Toy Factory A toy manufacturer makes lightweight balls for indoor play. The large basketball uses 4 ounces of foam and 20 minutes of labor and brings a profit of $2.50. The foot ball uses 3 ounces of foam and 30 minutes of labor and brings a profit of $2. The manufacturer has available 48 pounds of foam and 120 labor-hours a week. Use the simplex method to determine the optimal production schedule so as to maximize profits. Show that the geometric method gives the same solution.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please ensure that all parts of the question are answered thoroughly and clearly. Include a diagram to help explain answers. Make sure the explanation is easy to follow. Would appreciate work done written on paper. Thank you.
Selon une économiste d’une société financière, les dépenses moyennes pour « meubles et appareils de maison » ont été moins importantes pour les ménages de la région de Montréal, que celles de la région de Québec.
Un échantillon aléatoire de 14 ménages pour la région de Montréal et de 16 ménages pour la région Québec est tiré et donne les données suivantes, en ce qui a trait aux dépenses pour ce secteur d’activité économique.
On suppose que les données de chaque population sont distribuées selon une loi normale.
Nous sommes intéressé à connaitre si les variances des populations sont égales.a) Faites le test d’hypothèse sur deux variances approprié au seuil de signification de 1 %. Inclure les informations suivantes :
i. Hypothèse / Identification des populationsii. Valeur(s) critique(s) de Fiii. Règle de décisioniv. Valeur du rapport Fv. Décision et conclusion
b) A partir des résultats obtenus en a), est-ce que l’hypothèse d’égalité des variances pour cette…
Q4
4 Points
3
Let A =
5
-1
Let S : R³ → R² be the linear transformation whose standard matrix is A.
Let U : R² → R³ be the linear transformation whose standard matrix is AT (the transpose of A).
Let P: R³ → R³ be the linear transformation which first applies S and then applies U.
Let Q: R² → R² be the linear transformation which first applies U and then applies S.
Find the standard matrix of P and the standard matrix of Q. Clearly indicate which is which in
your work.
Please select file(s) Select file(s)
Save Answer
Chapter 4 Solutions
MyLab Math plus Pearson eText -- Standalone Access Card -- for Finite Mathematics & Its Applications (12th Edition)
Ch. 4.1 - 1. Determine by inspection a particular solution...Ch. 4.1 - Prob. 2CYUCh. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - For each of the following linear programming...Ch. 4.1 - 712For each of the linear programming problems in...Ch. 4.1 - 7–12 For each of the linear programming problems...
Ch. 4.1 - 712For each of the linear programming problems in...Ch. 4.1 - 7–12 For each of the linear programming problems...Ch. 4.1 - 7–12 For each of the linear programming problems...Ch. 4.1 - 712For each of the linear programming problems in...Ch. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - In Exercises 1320, find the particular solution...Ch. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - In Exercises 1320, find the particular solution...Ch. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - Prob. 18ECh. 4.1 - In Exercises 13–20, find the particular solution...Ch. 4.1 - In Exercises 1320, find the particular solution...Ch. 4.1 - Pivot the simplex tableau...Ch. 4.1 - Pivot the simplex tableau...Ch. 4.1 - 23. (a) Name the group I and group II variables in...Ch. 4.1 - 24. (a) Name the group I and group II variables in...Ch. 4.2 - 1. Which of these simplex tableaux has a solution...Ch. 4.2 - Prob. 2CYUCh. 4.2 - In Exercises 1–6, determine the next pivot element...Ch. 4.2 - In Exercises 16, determine the next pivot element...Ch. 4.2 - In Exercises 16, determine the next pivot element...Ch. 4.2 - In Exercises 1–6, determine the next pivot element...Ch. 4.2 - Prob. 5ECh. 4.2 - In Exercises 16, determine the next pivot element...Ch. 4.2 - !! For each of the simplex tableaux in Exercises...Ch. 4.2 - For each of the simplex tableaux in Exercises...Ch. 4.2 - !! For each of the simplex tableaux in Exercises...Ch. 4.2 - For each of the simplex tableaux in Exercises...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 11–20, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - In Exercises 1120, solve the linear programming...Ch. 4.2 - 21. Toy Factory A toy manufacturer makes...Ch. 4.2 - 22. Agriculture A large agricultural firm has 250...Ch. 4.2 - 23. Furniture Factory Suppose that a furniture...Ch. 4.2 - Stereo Store A stereo store sells three brands of...Ch. 4.2 - Weight Loss and exercise As part of a...Ch. 4.2 - 26. Furniture Factory A furniture manufacturer...Ch. 4.2 - Prob. 27ECh. 4.2 - Baby Products A baby products company makes car...Ch. 4.2 - Potting Soil Mixes A lawn and garden store creates...Ch. 4.2 - Prob. 30ECh. 4.2 - Prob. 31ECh. 4.2 - 32. Maximize subject to the constraints
Ch. 4.2 - Maximize 60x+90y+300z subject to the constraints...Ch. 4.2 - 34. Maximize subject to the constraints
Ch. 4.2 - Maximize 2x+4y subject to the constraints...Ch. 4.2 - Prob. 36ECh. 4.2 - In Exercises 1–6, determine the next pivot element...Ch. 4.3 - 1. Convert the following minimum problem into a...Ch. 4.3 - Suppose that the solution of a minimum problem...Ch. 4.3 - In Exercises 14, write each linear programming...Ch. 4.3 - In Exercises 14, write each linear programming...Ch. 4.3 - In Exercises 1–4, write each linear programming...Ch. 4.3 - In Exercises 1–4, write each linear programming...Ch. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 916, solve the linear programming...Ch. 4.3 - In Exercises 9–16, solve the linear programming...Ch. 4.3 - In Exercises 9–16, solve the linear programming...Ch. 4.3 - In Exercises 9–16, solve the linear programming...Ch. 4.3 - Prob. 13ECh. 4.3 - In Exercises 916, solve the linear programming...Ch. 4.3 - In Exercises 916, solve the linear programming...Ch. 4.3 - Prob. 16ECh. 4.3 - 17. Nutrition A dietitian is designing a daily...Ch. 4.3 - Electronics Manufacture A manufacturing company...Ch. 4.3 - Supply and Demand An appliance store sells three...Ch. 4.3 - 20. Political Campaign A citizen decides to...Ch. 4.3 - Inventory A Manufacturer of computers must fill...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - 24. Maximize subject to the constraints
Ch. 4.4 - Consider the furniture manufacturing problem,...Ch. 4.4 - Prob. 2CYUCh. 4.4 - Prob. 1ECh. 4.4 - Prob. 2ECh. 4.4 - Exercises 3 and 4 refer to the transportation...Ch. 4.4 - Exercises 3 and 4 refer to the transportation...Ch. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Prob. 8ECh. 4.4 - Prob. 9ECh. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - In Exercises 13 and 14, give the matrix...Ch. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - 19. Create a sensitivity report for the...Ch. 4.4 - Create a sensitivity report for the nutrition...Ch. 4.5 - A linear programming problem involving three...Ch. 4.5 - Prob. 2CYUCh. 4.5 - Prob. 1ECh. 4.5 - Prob. 2ECh. 4.5 - In Exercises 16, determine the dual problem of the...Ch. 4.5 - In Exercises 16, determine the dual problem of the...Ch. 4.5 - Prob. 5ECh. 4.5 - Prob. 6ECh. 4.5 - 7. The final simplex tableau for the linear...Ch. 4.5 - The final simplex tableau for the dual of the...Ch. 4.5 - Prob. 9ECh. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - In Exercises 11–14, determine the dual problem....Ch. 4.5 - Prob. 13ECh. 4.5 - In Exercises 11–14, determine the dual problem....Ch. 4.5 - 15. Cutting edge Knife Co. Give an economic...Ch. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Use the dual to solve Exercises 20 and 21....Ch. 4.5 - Use the dual to solve Exercises 20 and...Ch. 4 - 1. What is the standard maximization form of a...Ch. 4 - Prob. 2FCCECh. 4 - Prob. 3FCCECh. 4 - Give the steps for carrying out the simplex method...Ch. 4 - Prob. 5FCCECh. 4 - Prob. 6FCCECh. 4 - Prob. 7FCCECh. 4 - State the fundamental theorem of duality.Ch. 4 - Prob. 9FCCECh. 4 - 10. What is meant by “sensitivity analysis”?
Ch. 4 - Prob. 11FCCECh. 4 - In Exercises 1–10, use the simplex method to solve...Ch. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Determine the dual problem of the linear...Ch. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Consider the linear programming problems in...Ch. 4 - Prob. 17RECh. 4 - Nutrition A camp counselor wants to make a...Ch. 4 - Prob. 19RECh. 4 - 20. Stereo Store Consider the stereo store of...Ch. 4 - Jason’s House of Cheese offers two cheese...Ch. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Jasons House of Cheese offers two cheese...Ch. 4 - Jasons House of Cheese offers two cheese...Ch. 4 - Prob. 6P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Q3 4 Points Let T: R4 → R³ be the linear transformation defined by the formula 11 x1+x3+2x4 T x2 + 3 + 24 Is −1 +222 +23 I i. (2 points) Find the standard matrix of T. ii (2 points) Determine if I is one-to-one and determine if I' is onto. Please select file(s) Select file(s)arrow_forwardThe three right triangles below are similar. The acute angles LL, LR, and ZZ are all approximately measured to be 66.9°. The side lengths for each triangle are as follows. Note that the triangles are not drawn to scale. Z 20.17 m 60.51 m 66.9° 7.92 m 66.9° 80.68 m 66.9° 23.76 m 31.68 m Take one 18.55 m K P 55.65 m X 74.2 m Y (a) For each triangle, find the ratio of the length of the side opposite 66.9° to the length of the hypotenuse. Round your answers to the nearest hundredth. JK JL PQ PR XY ☐ XZ (b) Use the ALEKS Calculator to find sin 66.9°, cos 66.9°, and tan 66.9°. Round your answers to the nearest hundredth. sin 66.9° = ☐ cos 66.9° tan 66.9° = ☐ (c) Which trigonometric function gives each ratio of sides in part (a)? Osine Ocosine Otangent none of thesearrow_forwardAccording to an economist from a financial company, the average expenditures on "furniture and household appliances" have been lower for households in the Montreal area than those in the Quebec region. A random sample of 14 households from the Montreal region and 16 households from the Quebec region was taken, providing the following data regarding expenditures in this economic sector. It is assumed that the data from each population are distributed normally. We are interested in knowing if the variances of the populations are equal. a) Perform the appropriate hypothesis test on two variances at a significance level of 1%. Include the following information: i. Hypothesis / Identification of populations ii. Critical F-value(s) iii. Decision rule iv. F-ratio value v. Decision and conclusion b) Based on the results obtained in a), is the hypothesis of equal variances for this socio-economic characteristic measured in these two populations upheld? c) Based on the results obtained in a),…arrow_forward
- Please plot graphs to represent the functionsarrow_forwardEXAMPLE 6.2 In Example 5.4, we considered the random variables Y₁ (the proportional amount of gasoline stocked at the beginning of a week) and Y2 (the proportional amount of gasoline sold during the week). The joint density function of Y₁ and Y2 is given by 3y1, 0 ≤ y2 yı≤ 1, f(y1, y2) = 0, elsewhere. Find the probability density function for U = Y₁ - Y₂, the proportional amount of gasoline remaining at the end of the week. Use the density function of U to find E(U).arrow_forward7.20 a If U has a x² distribution with v df, find E(U) and V (U). b Using the results of Theorem 7.3, find E(S2) and V (S2) when Y₁, Y2,..., Y, is a random sample from a normal distribution with mean μ and variance o².arrow_forward
- According to a survey conducted by the American Bar Association, 1 in every 410 Americans is a lawyer, but 1 in every 64 residents of Washington, D.C., is a lawyer. a If you select a random sample of 1500 Americans, what is the approximate probability that the sample contains at least one lawyer? b If the sample is selected from among the residents of Washington, D.C., what is the ap- proximate probability that the sample contains more than 30 lawyers? c If you stand on a Washington, D.C., street corner and interview the first 1000 persons who walked by and 30 say that they are lawyers, does this suggest that the density of lawyers passing the corner exceeds the density within the city? Explain.arrow_forward7.50 Shear strength measurements for spot welds have been found to have standard deviation 10 pounds per square inch (psi). If 100 test welds are to be measured, what is the approximate probability that the sample mean will be within 1 psi of the true population mean? 7.51 Refer to Exercise 7.50. If the standard deviation of shear strength measurements for spot welds is 10 psi, how many test welds should be sampled if we want the sample mean to be within 1 psi of the true mean with probability approximately 992arrow_forward8.12 The reading on a voltage meter connected to a test circuit is uniformly distributed over the interval (0, +1), where 0 is the true but unknown voltage of the circuit. Suppose that Y₁, Y2,..., Y, denote a random sample of such readings. a Show that Y is a biased estimator of and compute the bias. b Find a function of Y that is an unbiased estimator of 0. C Find MSE(Y) when Y is used as an estimator of 0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning


Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY