Differential equations can be used to model disease epidemics. In the next set of problems, we examine the change of size of two sub-populations of people living in a city: individuals who are infected and individuals who are susceptible to infection. S represents the size of the susceptible population, and I represents the size of the infected population. We assume that if a susceptible person interacts with an infected person, there is a probability c that the susceptible person will become infected. Each infected person recovers from the infection at a rate r and becomes susceptible again. We consider the case of influenza, where we assume that no one dies from the disease, so we assume that the total population size of the two sub-populations is a constant number, N. The differential equations that model these population sizes are S ' = rI − cSI and I ' =cSI − rI. Here c represents the contact rate and r is the recovery rate. 113. [T] Evaluate the exact solution at t = 1. Make a table of errors for the relative error between the Euler’s method solution and the exact solution. How much does the error change? Can you explain?
Differential equations can be used to model disease epidemics. In the next set of problems, we examine the change of size of two sub-populations of people living in a city: individuals who are infected and individuals who are susceptible to infection. S represents the size of the susceptible population, and I represents the size of the infected population. We assume that if a susceptible person interacts with an infected person, there is a probability c that the susceptible person will become infected. Each infected person recovers from the infection at a rate r and becomes susceptible again. We consider the case of influenza, where we assume that no one dies from the disease, so we assume that the total population size of the two sub-populations is a constant number, N. The differential equations that model these population sizes are S ' = rI − cSI and I ' =cSI − rI. Here c represents the contact rate and r is the recovery rate. 113. [T] Evaluate the exact solution at t = 1. Make a table of errors for the relative error between the Euler’s method solution and the exact solution. How much does the error change? Can you explain?
Differential equations can be used to model disease epidemics. In the next set of problems, we examine the change of size of two sub-populations of people living in a city: individuals who are infected and individuals who are susceptible to infection. S represents the size of the susceptible population, and I represents the size of the infected population. We assume that if a susceptible person interacts with an infected person, there is a probability c that the susceptible person will become infected. Each infected person recovers from the infection at a rate r and becomes susceptible again. We consider the case of influenza, where we assume that no one dies from the disease, so we assume that the total population size of the two sub-populations is a constant number, N. The differential equations that model these population sizes are
S' = rI − cSI and
I' =cSI − rI.
Here c represents the contact rate and r is the recovery rate.
113. [T] Evaluate the exact solution at t = 1. Make a table of errors for the relative error between the Euler’s method solution and the exact solution. How much does the error change? Can you explain?
enter | Infinite Camp
ilc 8.3 End-of-Unit Assessment, Op x
Pride is the Devil - Google Drive x +
2 sdphiladelphia.ilclassroom.com/assignments/7FQ5923/lesson?card=806642
3
Problem 2
A successful music app tracked the number of song downloads each day for a month for 4 music artists, represented by lines l, j, m,
and d over the course of a month. Which line represents an artist whose downloads remained constant over the month?
Select the correct choice.
=
Sidebar
Tools
M
45
song downloads
days
d
1
2
3
4
5
6
7
8
00
8
m
l
RA
9
>
КУ
Fullscreen
G
Save & Exit
De
☆
Q/Determine the set of points at which
-
f(z) = 622 2≥ - 4i/z12
i
and
differentiable
analytice
is:
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY