University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 41.8, Problem 41.8TYU
To determine
Whether the wave function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following.
(a) What is the wavelength (in m) of the wave function for the particle?
m
(b) What is its ground-state energy (in eV)?
eV
(c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box
is the same as the ground-state energy found for the first box in part (b)?
m
(d) What would be the wavelength (in m) of the wave function for the particle in that case?
m
Problem 3. Consider the two example systems from quantum mechanics. First, for a
particle in a box of length 1 we have the equation
h² d²v
2m dx²
EV,
with boundary conditions (0) = 0 and (1) = 0.
Second, the Quantum Harmonic Oscillator (QHO)
V = EV
h² d²
2m da² +ka²)
1
+kx²
2
(a) Write down the states for both systems. What are their similarities and differences?
(b) Write down the energy eigenvalues for both systems. What are their similarities
and differences?
(c) Plot the first three states of the QHO along with the potential for the system.
(d) Explain why you can observe a particle outside of the "classically allowed region".
Hint: you can use any state and compute an integral to determine a probability of
a particle being in a given region.
Consider an anisotropic 3D harmonic oscillator where we = Wy
the energy of the particle in the following state (nx, ny, n₂) = (0, 0, 2)?
= w and wz
A. 4ħw
B. 6hw
C. 3ħw
D. 2.5ħw
= 2w. What is
Chapter 41 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- The normalised wavefunction for an electron in an infinite 1D potential well of length 89 pm can be written:ψ=(-0.696 ψ2)+(0.245 i ψ9)+(g ψ4). If the state is measured, there are three possible results (i.e. it is in the n=2, 9 or 4 state). What is the probability (in %) that it is in the n=4 state?arrow_forwardConsider the Schrodinger equation for a one-dimensional linear harmonic oscillator: -(hbar2/2m) * d2ψ/dx2 + (kx2/2)*ψ(x) = Eψ(x) Substitute the wavefunction ψ(x) = e-(x^2)/(ξ^2) and find ξ and E required to satisfy the Schrodinger equation. [Hint: First calculate the second derivative of ψ(x), then substitute ψ(x) and ψ′′(x). After this substitution, there will be an overall factor of e-(x^2)/(ξ^2) on both sides of the equation which canbe an canceled out. Then, gather all terms which depend on x into one coefficient multiplying x2. This coefficient must be zero because the equation must be satisfied for any x, and equating it with zero yields the expression for ξ. Finally, the remaining x-independent part of the equation determines the eigenvalue for energy E associated with this solution.]arrow_forwardI have an electron that I want to put in a rigid box. How small do I need to make the box so that the speed of my electron in its ground state inside the box will equal to the speed of light? NO NEED TO SOLVE SINCE CORRECT ANSWER IS 1.2 PM SKETCH THE U(X) AND Ψ(X)arrow_forward
- Could the function ψ(x)=Asin(π*x/L) for 0≤x≤L and ψ(x)=0 elsewhere (where A and L are real and positive constants) possibly be a valid quanton wavefunction under the right circumstances? Why or why not? (Hint: Sketching a graph of this wavefunction and its absolute square might prove helpful.)arrow_forwardAt time t = 0 the wave function for a particle in a box is given by the function in the provided image, where ψ1(x) and ψ1(x) are the ground-state and first-excited-state wave functions with corresponding energies E1 and E2, respectively. What is ψ(x, t)? What is the probability that a measurement of the energy yields the value E1? What is <E>?arrow_forwardTry to normalize the wave function ei(kx-ωt) . Why can’t it be done over all space? Explain why this is not possiblearrow_forward
- Consider a macroscopic object of mass 90 grams confined to move between two rigid walls separated by 2 m. What is the minimum speed of the object? What should the quantum number n be if the object is moving with a speed 1 ms-1? What is the separation of the energy levels of the object moving with that speed?arrow_forwardThe wavefunction for v =1 for a simple harmonic oscillator is Ψ = (2)1/2 ( α3/π)1/4 x exp (-αx2/2) Find the values of x such that ψ* ψ is a maximum.Hint: Differentiate dψ*ψ/dx and set the result equal to zero and solve for the value of x.arrow_forwarda. Consider a particle in a box with length L. Normalize the wave function: (x) = x(L – x) b. Consider a particle in a box of length L= 1 for the n= 2 state. Determine which of the two wave functions is normalized: v(x) = sin (27x) %3|arrow_forward
- ▼ Part A For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ap at distance aB? ▸ View Available Hint(s) 15. ΑΣΦ ? Part B For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ag at distance ag from the proton? ▸ View Available Hint(s) [5] ΑΣΦ ? Submit Submitarrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forwardA particle of massm in a harmonic oscillator potential with angular frequency w is in the state (1 + {t)쭈 What is (p?) for this particle? mhw 2 O 6mħw O 3mhwarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning