University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.65P
(a)
To determine
To convert:
the given ionization energies in the unit of
(b)
To determine
The nuclear charge (Z) and the quantum number (n) for least bound electron of the alkali metals given in table 1.
(c)
To determine
The effective atomic number
(d)
To determine
Whether the effective atomic number
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need some help with the following problem.
1a. What is the maximum number of electrons that can be emitted if a potassium surface of work function 2.40 eV absorbs 5.00 x 10-3 J of radiation at a wavelength of 325 nm?
b. What is the kinetic energy and velocity of the electrons emitted?
If the radius of a calcium ion is 0.22 nm, how much energy does it take to singly ionize it? Give your
answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits.
The K series of the discrete spectrum of tungsten contains wavelengths of 0.0185 nm, 0.0209 nm, and 0.0215 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L,
M, and N shells.
kev
EL
= 11.83
kev
2.4
Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. ke
EN
EM
= 10.17
%D
Chapter 41 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a) Calculate the excitation energies for the 1s → 3p electron transition for the H-atom and for the He+-ion. Calculate the energy values in joules. b) What is the ionization energy (in eV) of H-atom in the 4d-state? Note: En = 2n² Eh, 1Eh = 27.2114eV = 2625.500kJ/mol = 4.35974394-10-18 Jarrow_forwardThe number of silicon atoms per m3 is 5 × 1028. This is doped simultaneously with 5 × 1022 atoms per m3 of Arsenic and 5 × 1020 per m3 atoms of Indium. Calculate the number of electrons and holes. Given that ni = 1.5 × 1016 m-3. Is the material n-type or p-type?arrow_forwardThe K series of the discrete spectrum of tungsten contains wavelengths of 0.0185 nm, 0.0200 nm, and 0.0215 nm. The K-shel lontzation onargy is 69.5 kev. Determine the ionization energies of the L, M, and N shels ke ke kev Need Help? Read Master Subnt Anoa 13. DETAILS SERCP11 28.A.P.047. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER (0) How much energy is required to cause an electron in hydrogen to move from the n-2 state to the n-3 state? ev (b) If the eloctrons gain this energy by collision between hydrogen atoms in a high temperature gas, find the mimmum temperature of the heated hydrogen gas. The thermal energy of the heated atoms is given by 3kT/2. wihere k is the Boliemann conctant. Need Help? Read 14. DETAILS SERCP11 28.AP.048. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A puled ruby liner emits lght at 604,3 nm. For a 14.7-ps pulse containing 3.40 Jof energy, find the folowing (a) the physical length of the pulse as it travak through space mmarrow_forward
- The characteristic K, and K, lines for chromium have wavelengths of 0.229 nm and 0.208 nm, respectively. What is the ratio of the energy difference between the levels in chromium involved in the production of these two lines? ΔΕ. ΔΕ AEarrow_forwarda. The electron of a hydrogen atom is excited into a higher energy level from a lower energy level. A short time later the electron relaxes down to the no = 1 energy level, releasing a photon with a wavelength of 93.83 nm. Compute the quantum number of the energy level the electron relaxes from, nhi. Note: the Rydberg constant in units of wavenumbers is 109,625 cm-1 nhi =16 b. What would the wavenumber, wavelength and energy of the photon be if instead no = 1 and nhi = 4? V: 6.9121e14 x (cm-¹) λ: (nm) E: 45.8e-20 ✓ (1)arrow_forwardA. If the position of a chlorine ion in a membrane is measured to an accuracy of 1.50 µm, what is its minimum uncertainty in velocity (in m/s), given its mass is 5.86 10-26 kg? B. If the ion has this velocity, what is its kinetic energy in eV? (Compare this with typical molecular binding energies of about 5 eV.)arrow_forward
- Consider the Bohr model as applied to the following three atoms: (A) neutral hydrogen in the state n = 2; (B) singly ionized helium in the state n = 1; (C) doubly ionized lithium in the state n = 3. Part A Q Search Rank these three atoms in order of decreasing orbital radius. Rank atoms from largest to smallest Bohr radius. To rank items as equivalent, overlap them. Largest P Pearson atom A atom B atom C Reset Help Smallest Copyright © 2022 Pearson Education Inc. All rights reserved. | Terms of Use | Privacy Policy | Permissions | Contact Us | 7:18 PM 12/11/2022arrow_forwardHow many unpaired electrons are there in the following ground-state atoms and ions? If none, enter a zero in the answer box. Se has Aghas 2+ Cd has Zr has Number Number Number ☐ Number 0 unpaired e unpaired e unpaired e unpaired earrow_forwardThe K series of the discrete spectrum of tungsten contains wavelengths of 0.0185 nm, 0.0209 nm, and 0.0215 nm. The K-shell ionization energy is 69.5 keV. Determine the ionization energies of the L, M, and N shells. EL= ______ keV EM= ______ keV EN= ______ keVarrow_forward
- The 5s electron in rubidium (Rb) sees an effective charge of 2.771e. Calculate the ionization energy of this electron.arrow_forward= = Imagine that we have a box that emits electrons in a definite but unknown spin state y). If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz +ħ and 80% to have S₂ -ħ. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx Determine the state vector for electrons emerging from the box. You may assume that the vector components are real. -1/ħ. = -arrow_forwardThe Ka X-ray emission line of tungsten occurs at λ = 0.021 nm. The energy difference between K and L levels in this atoms is about (a) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13.6 eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College