University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.5DQ
To determine
why it is not easy to form beams using ionized atoms in Stern-Gerlach experiment.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Stern-Gerlach experiment is always performed with the beam of nuetral atoms wouldn't be easier to form beam using ionized atoms? Why wouldn't this work?
Q7M1
(a) Construct an energy-level diagram for the He+ ion, for which Z = 2, using the Bohr model. (b) What is the ionization energy for He1?
Chapter 41 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If, in 1 1 = Ry - you set ni = 1 and take n2 greater than 1, you generate what is known as the Lyman %3D series. Find the wavelength of the first mem- ber of this series. The value of ħ is 1.05457 × 10¬34 J.s; the Rydberg constant for hydrogen is 1.09735 × 10’ m¬'; the Bohr radius is 5.29177 × 10¬1" m; and the ground state energy for hydrogen is 13.6057 eV. Answer in units of nm. Consider the next three members of this se- ries. The wavelengths of successive members of the Lyman series approach a common limit as n2 → ∞. What is this limit? Answer in units of nm.arrow_forwardIn a particular Stern-Gerlach experiment to be performed with silver atoms in the l = 0 state at 850. oC, a scientist can reliably tell whether the silver atoms are deflected by 1.44 mm. What characteristics of magnet should be used if the interaction length is 0.750 m? Specifically, what is the magnetic field strength in units of Tesla per meter?arrow_forwardA particle of charge q and mass m, moving with a constant speed v, perpendicular to a constant magnetic field B, follows a circular path. If in this case the angular momentum about the center of this circle is quantized so that mur = 2nh, show that the allowed radii for the particle are 2nh V qB where n = 1, 2, 3,....arrow_forward
- what is the wavelength of a hydrogen Balmer series proton for m=4 and n=2? Use the rydberg formulaarrow_forwardUse the Bohr theory to estimate the wavelength for an n = 3 to n = 1 transition in molybdenum. The measured value is 0.063 nm. Why do we not expect perfect agreement?arrow_forward(a) The current i due to a charge q moving in a circle with frequency frev is q frev. Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units A-m2. This magnetic moment is called a Bohr magneton.arrow_forward
- Calculate the shortest wavelength that can be emitted by the Li++ ion.arrow_forwardCalculate the frequency of the n = 4 line in the Lyman series of hydrogen. v゠ (Please type answer no write by hend)arrow_forwardWhat is the difference in the various Bohr radii rn for the hydrogen atom (a) between r1 and r2, (b) between r5 and r6, and (c) between r10 and r11? (d) Show that for Rydberg atoms the difference between successive radii is approximately 2na0.arrow_forward
- What would be the outcome of the Stern-Gerlach experiment if (a) a homogeneous (as opposed to inhomogeneous) magnetic field was used? (b) silver atoms were like classical magnets? Discuss if the beam of silver atoms would get split or not. Suppose that the beam direction is +x, and the magnetic field B is applied in the z direction.arrow_forwardLook up the values of the quantities in aB = h2 / 4π2 me kqe2 ,and verify that the Bohr radius aB is 0.529 x 10-10 m .arrow_forward(a) The current i due to a charge q moving in a circle with frequency frev is qfrev . (a) Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment of the electron in the first Bohr orbit in units Am2 . This magnetic moment is called a Bohr magneton.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning