Medicine. A drug is injected into the bloodstream of a patient through the right arm. The drug concentration in the bloodstream of the left arm t hours after the injection is approximated by C ( t ) = 0.28 t t 2 + 4 0 < t < 24 Find the critical numbers of C ( t ), the intervals on which the drug concentration is increasing, the intervals on which the concentration of the drug is decreasing, and the local extrema. Do not graph.
Medicine. A drug is injected into the bloodstream of a patient through the right arm. The drug concentration in the bloodstream of the left arm t hours after the injection is approximated by C ( t ) = 0.28 t t 2 + 4 0 < t < 24 Find the critical numbers of C ( t ), the intervals on which the drug concentration is increasing, the intervals on which the concentration of the drug is decreasing, and the local extrema. Do not graph.
Solution Summary: The author explains the critical numbers of C(t) and the local extrema.
Medicine. A drug is injected into the bloodstream of a patient through the right arm. The drug concentration in the bloodstream of the left arm t hours after the injection is approximated by
C
(
t
)
=
0.28
t
t
2
+
4
0
<
t
<
24
Find the critical numbers of C(t), the intervals on which the drug concentration is increasing, the intervals on which the concentration of the drug is decreasing, and the local extrema. Do not graph.
Examples: Solve the following differential equation using Laplace transform
(e) ty"-ty+y=0 with y(0) = 0, and y'(0) = 1
Examples:
Solve the following differential equation using Laplace transform
(a) y" +2y+y=t with y(0) = 0, and y'(0) = 1
Temperature for Sudbury
(degrees Celsius)
3.
The following table gives the mean monthly temperatures for Sudbury, Ontario and
Windsor, Ontario. Each month is represented by the day of the year in the middle of the month.
Month
Day of Year
Temperature for Windsor
(degrees Celsius)
January
15
-13.7
-4.7
February
45
-11.9
-3.8
March
75
-5.9
2.3
April
106
3.0
8.7
May
136
10.6
14.6
June
167
15.8
20.2
July
197
18.9
22.6
August
228
17.4
22.0
September
259
12.2
17.9
October
289
6.2
11.5
November
320
-1.2
4.8
December
350
-10.1
-1.2
a) Create a scatter plot of temperature vs. day of the year for each city.
b) Draw the curve of best fit for each graph.
c) Use your graphs to estimate when the temperature increases fastest, for each set of
temperature data. Explain how you determined these values.
d) Use your graphs to estimate the rate at which the temperature is increasing at the two
times
from question 3.
e) Determine an equation of a sinusoidal function to model the data for each city
Chapter 4 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.