Earthquakes. An earthquake emits a primary wave and a secondary wave. Near the surface of the Earth the primary wave travels at 5 miles per second and the secondary wave at 3 miles per second. From the time lag between the two waves arriving at a given receiving station, it is possible to estimate the distance to the quake. Suppose a station measured a time difference of 16 seconds between the arrival of the two waves. How long did each wave travel, and how far was the earthquake from the station?
Earthquakes. An earthquake emits a primary wave and a secondary wave. Near the surface of the Earth the primary wave travels at 5 miles per second and the secondary wave at 3 miles per second. From the time lag between the two waves arriving at a given receiving station, it is possible to estimate the distance to the quake. Suppose a station measured a time difference of 16 seconds between the arrival of the two waves. How long did each wave travel, and how far was the earthquake from the station?
Solution Summary: The author calculates the time for which the primary and secondary waves travelled. The distance of the earthquake from the station is 120 miles.
Earthquakes. An earthquake emits a primary wave and a secondary wave. Near the surface of the Earth the primary wave travels at
5
miles per second and the secondary wave at
3
miles per second. From the time lag between the two waves arriving at a given receiving station, it is possible to estimate the distance to the quake. Suppose a station measured a time difference of
16
seconds between the arrival of the two waves. How long did each wave travel, and how far was the earthquake from the station?
10
5
Obtain by multiplying matrices the composite coordinate transformation of two transformations, first
x' = (x + y√√2+2)/2
y' =
z'
(x√√2-2√2)/2
z = (-x+y√√2-2)/2
followed by
x"
=
(x'√√2+z'√√2)/2
y" = (-x'y'√√2+2')/2
z" = (x'y'√√2-2')/2.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY