Proof In Exercises 65 − 68 , complete the proof of the remaining properties of theorem 4.3 by supplying the justification for each step. Use the properties of vector addition and scalar multiplication from theorem 4.2. Property 6: − ( − v ) = v − ( − v ) + ( − v ) = 0 and v + ( − v ) = 0 a . ________________ − ( − v ) + ( − v ) = v + ( − v ) b . ________________ − ( − v ) + ( − v ) + v = v + ( − v ) + v c . ________________ − ( − v ) + ( ( − v ) + v ) = v + ( ( − v ) + v ) d . ________________ − ( − v ) + 0 = v + 0 e . ________________ − ( − v ) = v f . ________________
Proof In Exercises 65 − 68 , complete the proof of the remaining properties of theorem 4.3 by supplying the justification for each step. Use the properties of vector addition and scalar multiplication from theorem 4.2. Property 6: − ( − v ) = v − ( − v ) + ( − v ) = 0 and v + ( − v ) = 0 a . ________________ − ( − v ) + ( − v ) = v + ( − v ) b . ________________ − ( − v ) + ( − v ) + v = v + ( − v ) + v c . ________________ − ( − v ) + ( ( − v ) + v ) = v + ( ( − v ) + v ) d . ________________ − ( − v ) + 0 = v + 0 e . ________________ − ( − v ) = v f . ________________
Solution Summary: The author explains how to determine the name of the property for each step.
Proof In Exercises
65
−
68
, complete the proof of the remaining properties of theorem 4.3 by supplying the justification for each step. Use the properties of vector addition and scalar multiplication from theorem 4.2.
Property 6:
−
(
−
v
)
=
v
−
(
−
v
)
+
(
−
v
)
=
0
and
v
+
(
−
v
)
=
0
a
.
________________
−
(
−
v
)
+
(
−
v
)
=
v
+
(
−
v
)
b
.
________________
−
(
−
v
)
+
(
−
v
)
+
v
=
v
+
(
−
v
)
+
v
c
.
________________
−
(
−
v
)
+
(
(
−
v
)
+
v
)
=
v
+
(
(
−
v
)
+
v
)
d
.
________________
−
(
−
v
)
+
0
=
v
+
0
e
.
________________
−
(
−
v
)
=
v
f
.
________________
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.