For the frame and loading shown, determine the reactions at A E when (a) α = 30º, (b) α = 45 º.
Fig. P4.27
(a)
The reaction at
Answer to Problem 4.27P
The reaction at
Explanation of Solution
Forces acting upward and rightward are considered as positive and the torque acting counter clockwise is considered as positive.
Let
The free body diagram is sketched below as figure 1.
Here,
Write the expression for the moment at
Here,
Above equation implies that net moment at any point is the sum of product of each force acting on the system and perpendicular distance of the force about that point.
The moment at
The angle
The complete expression of moment
Here,
From figure 1, write the expression for the
From figure 1, write the expression for the
At equilibrium, the sum of the moment acting at
Write the expression for the total moment acting at
The forces along the
Therefore, write the expression for the net force along the
Here,
At equilibrium, the net force along the
The forces along the
Therefore, write the expression for the net force along the
Here,
At equilibrium, the net force along the
Write the expression for the magnitude of net reaction at
Here,
Let
Therefore, write the expression for the
Calculation:
Substitute
Substitute
Substitute
The negative sign indicates that direction of
Substitute
Substitute
The negative sign indicates that
Therefore, the reaction at
(b)
The reaction at
Answer to Problem 4.27P
The reaction at
Explanation of Solution
Take all vectors along the
Let
The free body diagram is sketched in figure 1.
Write the expression for the moment at
Here,
Above equation implies that net moment at any point is the sum of product of each force acting on the system and perpendicular distance of the force and the point.
The moment at
The angle
Thus, the complete expression of net anticlockwise moment
Here,
From figure 1, write the expression for the
From figure 1, write the expression for the
At equilibrium, the sum of the moment acting at
Write the expression for the total moment acting at
The forces along the
Therefore, write the expression for the net force along the
Here,
At equilibrium, the net force along the
The forces along the
Therefore, write the expression for the net force along the
Here,
At equilibrium, the net force along the
Write the expression for the magnitude of net reaction at
Here,
Let
Therefore, write the expression for the
Calculation:
Substitute
Substitute
Substitute
The negative sign indicates that direction of
Substitute
Therefore, the reaction at
Want to see more full solutions like this?
Chapter 4 Solutions
VECTOR MECHANICS FOR ENGINEERS: STATICS
- Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forward
- Question 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY