MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.5E
To determine
For what planes is the probability distribution function for particle in the state
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Express the complex number z1 = (√(3) + i)/2 in the form rei Φ. What about z2 = (1 + √(3i))/2? If these complex numbers are the probability amplitudes for photons to be detected, what is the probability in each case?
(Hint: See attatched image for more on finding probability amplitudes)
Problem 3. Consider the two example systems from quantum mechanics. First, for a
particle in a box of length 1 we have the equation
h² d²v
2m dx²
EV,
with boundary conditions (0) = 0 and (1) = 0.
Second, the Quantum Harmonic Oscillator (QHO)
V = EV
h² d²
2m da² +ka²)
1
+kx²
2
(a) Write down the states for both systems. What are their similarities and differences?
(b) Write down the energy eigenvalues for both systems. What are their similarities
and differences?
(c) Plot the first three states of the QHO along with the potential for the system.
(d) Explain why you can observe a particle outside of the "classically allowed region".
Hint: you can use any state and compute an integral to determine a probability of
a particle being in a given region.
Consider a macroscopic object of mass 90 grams confined to move between two rigid walls separated by 2 m. What is the minimum speed of the object? What should the quantum number n be if the object is moving with a speed 1 ms-1? What is the separation of the energy levels of the object moving with that speed?
Chapter 41 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- A Gaussian wave packet is a function that satisfies the Schrodinger equation and is normalized over all space. Normalize the wave function if the Gaussian function can be written, 00 Y(x) = Ae-[(x-c)/4ɛ]? a helpful integral: " e-a(z-b)² dz = a And determine what the function of energy for a particle under this wave function would be if U(x) = 0 over all space.arrow_forwardFor a particle in a 1-dimensional infinitely deep box of length L, the normalized wave function or the 1st excited state can be written as: Ψ2(x) = {1/i(2L)1/2} ( eibx -e-ibx), where b = 2π/L. Give the full expression that you need to solve to determine the probalibity of finding the particle in the 1st third of the box. Simplify as much as possible but do not solve any integrals.arrow_forwardState whether the following statements are true or false: For a particle in a box (PIB) in one dimension, the energy is quantized. For a PIB in one dimension, the boundary condition must have E of at least 0. The probability of finding a PIB in one dimension approaches zero as x approaches positive or negative infinity. For a particle in a rectangular well, the N number of bound states increases when the particle is changed from being an electron to a nucleus.arrow_forward
- Do both mcq in detailarrow_forwardConsider a very simplistic model of atomic nucleus in 1D: a proton is completely localized in a 1D box of width L = 1.00 × 10¬14m. In other words, the proton wavefunction outside of the "nucleus" is zero. Note that L represents a typical nuclear radius. (A) What are the energies of the ground and the first excited states? If the proton makes a transition from the first excited state to the ground state, what is the angular frequency of the emitted photon? (B) What is the probability that the proton in its ground state (i.e., the lowest energy state) is not found in the distance L/12 around each boundary of the box? (C) Using the uncertainty principle, derive a minimum possible value on the momentum uncertainty in the second state above the ground state. (D) Compare your answer to the previous question (B) to probability distribution one would obtain for a classical particle. First argue about how the probability distribution would look for a classical object in its ground state. How…arrow_forwardThe Einstein's model makes the assumption that a solid can be treated a set of N identical, independent harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single harmonic oscillator is described by the quantized energy levels: E, = kħw, where k = 0,1, 2, ....arrow_forward
- A particle is in a three-dimensional box. The y length of the box is twice the x length, and the z length is one-third of the y length. (a) What is the energy difference between the first excited level and the ground level? (b) Is the first excited level degenerate? (c) In terms of the x length, where is the probability distribution the greatest in the lowest-energy level?arrow_forward1arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 430 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width &x = 5.0 pm centered at x = 260 pm? (Hint: The interval Sx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forward
- Try to normalize the wave function ei(kx-ωt) . Why can’t it be done over all space? Explain why this is not possiblearrow_forwardAt the microscopic level, it is possible to understand the spontaneous emission of an alpha particle as having that particle trapped into a potential well, and having it exiting through a tunnel effect. For the following, we will assume we have a potential which is in the following form: ⚫ The potential is symmetrical on the x-axis ⚫ The potential has also a cylindrical symmetry, i.e. in a polar base it does not depend on the polar angle ⚫ For any x =L, the value of the potential is supposed to be Ve**, with A being a positive value. 1) Solve the wave function of the system 2) Assuming you have a probability P to observe the alpha decay, can you write down the equation to compute the values of the coefficients A of the wave functions?arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 200 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width öx = 5.0 pm centered at x = 100 pm? (Hint: The interval öx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning