MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.38E
To determine
The wavelengths of the Kα and Kβ x rays of tungsten.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The energies for an electron in the K, L, and M shells of the tungsten atom are -69,500 eV, -12,000 eV, and -2200 eV, respectively. Calculate the wavelengths of the Ka and Kb x rays of tungsten.
A visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm.
A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.)
B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?
A hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state. In the absence of an external magnetic field, what is the wavelength of this photon?
Chapter 41 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- O The electron transitions to the n 2 state. O The electron transitions to the n = 5 state. O The electron is captured by the nucleus. A hypothetical atom has three energy levels: the ground-state level and levels 1.25 eV and 2.75 eV above the ground state. When this atom is in the ground state, what wavelengths of light may it absorb? Let Planck's constant h = 4.136 x 10 eV s, and the speed of light c= 3.00 x 10° m/s. O451 nm and 993 nm O 451 nm, 827 nm, and 993 nm O 827 nm and 993 nm O451 nm and 827 nmarrow_forwardA sodium atom makes a transition from the first excited state to the groundstate, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 1.6 × 10−8 s , what is the uncertainty in energy of this excited state? What is the width of the corresponding spectral line?arrow_forwardCopper has a density of 8.9 g/cm3 and a gram-atomic mass of 63.56. The total atomic attenuation coefficient of copper is 8.8 × 10−24 cm2/atom for 500-keV photons. What thickness (in centimeters) of copper is required to attenuate 500-keV photons to half of the original number?arrow_forward
- What is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forwardAn X-ray photon with a wavelength of 0.999 nmnm strikes a surface. The emitted electron has a kinetic energy of 990 eV. What is the binding energy of the electron in kJ/molkJ/mol? [Note that KEKE = 12mv212mv2 and 1 electron volt (eVeV) = 1.602×10−19J1.602×10−19J.] Express your answer using three significant figures.arrow_forwardH-alpha line is a red visible spectral line in hydrogen atom with a wavelength of 656.3 nm. Consider five distant stars labeled A, B, C, D, and E. The light from these starts was detected on Earth and, after performing spectral analysis, the following H-alpha wavelengths were measured: A = 665.5 nm, AB = 643.7 nm, Ac = 653.9 nm, Ap = 663 nm, and AE = 661.2 nm. Which star has the slowest speed relative to Earth, in which direction and how fast does it move? ✓ Earth. The slowest star is CV and it moves towards The speed of the slowest star (in km/s), Vslowest Which star has the fastest speed relative to Earth, in which direction and how fast does it move? The fastest star is B ✓ and it moves towards = -1.095E12 X Units km/s The speed of the fastest star (in km/s), Vfastest = -5.73E6 Earth. x Units km/sarrow_forward
- The L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forwardb. An electron and a photon has the same wavelength of 0.21 nm. Calculate the momentum and energy (in eV) of the electron and the photon. (Given c =3.00x108 m s-1, h =6.63 x 1034 J s, me=9.11 x 10-31 kg, mp=1.67 x 1027 kg and e=1.60x1019 C)arrow_forwardA hydrogen atom is initially in the n = 6 state. It drops to the n = 2 state, emitting a photon in the process. (a) What is the energy (in ev) of the emitted photon? 3.022 ev (b) What is the frequency (in Hz) of the emitted photon? 7.293e14 v Hz (c) What is the wavelength (in um) of the emitted photon? 41.14 umarrow_forward
- When a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the width of the box in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?arrow_forwardIf the zirconium atom ground state has S= 1 and L = 3, what are the permissible values of J? Write the spectroscopic notation for these possible values of S, L, and J. Which one of these is likely to represent the ground state?arrow_forwardA hydrogen atom in an n=2, I=1, m1 = -1 state emits a photon when it decays to an n=1 I=0, mI=0 ground state. If the atom is in a magnetic field in the + z direction and with a magnitude of 2.50 T, what is the shift in the wavelength of the photon from zero-field value?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning