University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.1E
(a)
To determine
The degeneracy of the energy levels for the particle in a three dimensional box having energy level
(b)
To determine
The degeneracy of the energy level
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For a particle in a three-dimensional cubical box, what is the degeneracy (number of different quantum states with the same energy) of the energy levels (a) 3p2h2/2mL2 and (b) 9p2h2/2mL2?
For a particle in a three-dimensional box, if the particle is in the (nx, ny, nz)=(4,3,3) state, what is the probability of finding the particle within
0<x<7LX/8
0,y,3Ly/4
LZ/4<z<Lz
A particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.
Chapter 41 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- What is the probability that an electron in the 1s orbital will be within a 1.50 Å radius? ?1? = (1/ (?1/2 a03/2)) e-r/a0 and ∫ x2 ebx dx= ebx (x2/b - 2x/b2 + 2/b3 )arrow_forward!arrow_forwardA hypothetical atom has energy levels uniformly separated by 1.2 eV.At a temperature of 2000 K, what is the ratio of the number of atoms in the 13th excited state to the number in the 11th excited state?arrow_forward
- A rectangular corral of widths Lx = L and Ly = 2L holds an electron.What multiple of h2/8mL2, where m is the electron mass, gives (a) the energy of the electron’s ground state, (b) the energy of its first excited state, (c) the energy of its lowest degenerate states, and (d) the difference between the energies of its second and third excited states?arrow_forwardAngular momentum in quantum mechanics is given by L = Lxi+Lyj+Lzk with components Lx = ypz- zpy, Ly = zpx - xpz, Lz = xpy - ypx. a) Use the known commutation rules for x, y, z, px, py and pz to show that [Ly, Lz] = ihLx. b) Consider the spherical harmonic Y1, -1([theta], [phi]) = (1/2)*sqrt(3/2pi)*sin[theta]*e-i[phi], where [theta] and [phi] are the polar and azimuthal angles, respectively. -> i) Express Y1, -1 in terms of cartesian coordinates. -> ii) Show that Y1, -1 is an eigenfunction of Lz. ci) Express the wavefunction [psi]210 for the 2pz orbital of the hydrogen atom (derived in the lectures and given in the notes) in cartesian coordinates. [Note: This involves a different spherical harmonic than in (b).] ii) Based on this expression, show that this wavefunction satisfies the three-dimensional stationary Schrodinger equation of the hydrogen atom, and determine the corresponding energy. I have attached the question better formatted, as well as the information from…arrow_forwardQ.54 A particle in one dimensional box of length 2a with potential energy [0 1지 a V = is perturbed by the potential V'= cx eV, where c is a constant. The 1st order correction to the 1st excited state of the system is хсeV.arrow_forward
- A cubical box of widths Lx = Ly = Lz = L contains an electron.What multiple of h2/8mL2, where m is the electron mass, is (a) the energy of the electron’s ground state, (b) the energy of its second excited state, and (c) the difference between the energies of its second and third excited states? How many degenerate states have the energy of (d) the first excited state and (e) the fifth excited state?arrow_forwardAn electron is in a three-dimensional box. The xx- and zz-sides of the box have the same length, but the yy-side has a different length. The two lowest energy levels are 2.18 eVeV and 3.47 eVeV, and the degeneracy of each of these levels (including the degeneracy due to the electron spin) is two. What is the length LY for side of the box? What are the lengths LXLX, LZLZ for sides of the box? What is the energy for the next higher energy state? What are the quantum numbers for the next higher energy state? What is the degeneracy (including the spin degeneracy) for the next higher energy state?arrow_forwardConsider a quantum mechanical ideal harmonic oscillator having a zero point energy of 1.4*10^-20J. how much energy could be released if the oscillator makes a transition from n=4 to n=2 states? a)0.69*10^19J b)2.88*10^-20J c)5.76*10^20J d)none are correctarrow_forward
- We are going to use Heisenberg's uncertainty principle to estimate the ground- state energy of hydrogen. In our model, the electron is confined in a one- dimensional well with a length about the size of hydrogen, so that Ax = 0.0529 nm. Estimate Ap, and then assume that the ground-state energy is roughly Ap2/2me. (Give your answer in Joules or electron-volts.)arrow_forwardAn electron is in an infinite square well of width 2.0 nm. What is the wavelength of the emitted photon in nanometers as the electron transitions from the n=8 to the n=4 state? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg, 1 eV = 1.60 × 10-19J). Please give your answer with no decimal places.arrow_forwardA cubical box of widths Lx= Ly = Lz = L contains eight electrons.What multiple of h2/8mL2 gives the energy of the ground state of this system? Assume that the electrons do not interact with one another, and do not neglect spin.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning