Compare the probability of finding the particle
Answer to Problem 41.1DQ
The probability of finding the particle
Explanation of Solution
Probability of finding the particle is known as probability density of the particle.
Write the expression for the probability density of the particle in volume
Here,
Substitute
Here,
Substitute
Here,
Thus from above two calculation the probability of finding particle
Conclusion:
Thus, the probability of finding the particle
Want to see more full solutions like this?
Chapter 41 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
- A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardA free particle moving in one dimension has wave function Ψ(x, t)= A[ei(kx-vt)- ei(2kx-vt)]where k and v are positive real constants.Calculate vav as the distance the maxima have moved divided by the elapsed time.arrow_forwardAt t = 0, a particle is prepared to assume the state V(x,0) = ¹+2i₁(x) + cos (²) sin( ³ )&₂(x) + A¥3(x) where A is a constant and the eigenfunctions ₁(x), 2(x), and 3(x) correspond to energies E₁, E2, and E3, respectively. What is the probability that the particle has energy E3? a. 0.822 b. 0.325 c. 0.675 d. 0.570arrow_forward
- Problem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v EV, 2m dx² with boundary conditions (0) = 0 and V(1) = 0. Second, the Quantum Harmonic Oscillator (QHO) = h² d² +kr²V = EV 2m dg²+ka² 1/ k2²) v (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forwardAn electron with a kinetic energy of 44.34 eV is incident on a square barrier with Up = 57.43 eV and w = 2.200 nm. What is the probability that the electron tunnels through the barrier? (Use 6.626 x 1034 j x S for h, 9.109 x 1031 kg for the mass of an electron, and 1.60 x 1019 C for the charge of an electron.)arrow_forwardA proton and a deuteron (which has the same charge as the proton but 2 times the mass) are incident on a barrier of thickness 10 fm and height 10 MeV. Each particle has the same kinetic energy. Which particle has the higher probability of tunneling through the barrier?arrow_forward
- For a particle in a one-dimensional box, calculate the probability of the particle to exists between the length of 0.30L and 0.70L if n = 5.arrow_forwardV (x) = 00, V(x) = 0, x<0,x 2 a 0arrow_forwardConsider a particle of mass m moving in a 2-dimensional rectangular box of sides La and Ly, with Le 2Ly. If we use the symbols E, to denote the energy of the ground state of the system, Ee1 the energy of the first excited state, Ee2 the energy of the second excited state, and Ee3 the energy of the third excited state, what are the numerical values of the ratios Ee1/Eg, Ee2/Eg, and Ee3/E,?arrow_forwardAn electron moves in the x direction with a speed of 3.6 x 10 m/s. We can measure its speed to a precision of 1%. With what precision can we simultaneously measure its x coordinate?arrow_forwardAn electron has total energy 6.29 eV. The particle initially travels in a region with constant potential energy 0.61 eV, before encountering a step to a new constant potential energy of 4.03 eV. What is the probability (in %) that the electron will be transmitted over the potential step?arrow_forwardThe general solution of the Schrodinger equation for a particle confined in an infinite square-well potential (where V = 0) of width L is w(x)= C sin kx + Dcos kx V2mE k where C and D are constants, E is the energy of the particle and m is the mass of the particle. Show that the energy E of the particle inside the square-well potential is quantised.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning