Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.1, Problem 37P
Program Plan Intro
Program Description:Purpose of problem is to show that equations of motion of projectile are
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. calculates the trajectory r(t) and stores the coordinates for time steps At as a nested list trajectory that contains [[xe, ye,
ze], [x1, y1, z1], [x2, y2, z2], ...]. Start from time t = 0 and use a time step At = 0.01; the last data point in the
trajectory should be the time when the oscillator "hits the ground", i.e., when z(t) ≤ 0;
3. stores the time for hitting the ground (i.e., the first time t when z(t) ≤ 0) in the variable t_contact and the corresponding positions
in the variables x_contact, y_contact, and z_contact. Print
t_contact = 1.430
X_contact = 0.755
y contact = -0.380
z_contact =
(Output floating point numbers with 3 decimals using format (), e.g., "t_contact = {:.3f}" .format(t_contact).) The partial
example output above is for ze = 10.
4. calculates the average x- and y-coordinates
1
y =
Yi
N
where the x, y, are the x(t), y(t) in the trajectory and N is the number of data points that you calculated.
Store the result as a list in the variable center = [x_avg, y_avg]…
A tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m
long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it
sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the
speed of sound in air is 343 m/s, find (a) that
frequency and (b) the tension in the wire.
(a) Number i
66.0
(b) Number i
Units
Hz
Units
An aluminum wire having a cross-sectional area equal to 4.60 x 10-6 m? carries a current of 7.50 A. The density of aluminum is 2.70 g/cm³.
Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire.
1.95E-4
The equation for the drift velocity includes the number of charge carriers per volume, which in this case is equal to the number of atoms per
volume. How do you calculate that if you know the density and the atomic weight of aluminum? mm/s
Chapter 4 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 4.1 - Prob. 1PCh. 4.1 - Prob. 2PCh. 4.1 - Prob. 3PCh. 4.1 - Prob. 4PCh. 4.1 - Prob. 5PCh. 4.1 - Prob. 6PCh. 4.1 - Prob. 7PCh. 4.1 - Prob. 8PCh. 4.1 - Prob. 9PCh. 4.1 - Prob. 10P
Ch. 4.1 - Prob. 11PCh. 4.1 - Prob. 12PCh. 4.1 - Prob. 13PCh. 4.1 - Prob. 14PCh. 4.1 - Prob. 15PCh. 4.1 - Prob. 16PCh. 4.1 - Prob. 17PCh. 4.1 - Prob. 18PCh. 4.1 - Prob. 19PCh. 4.1 - Prob. 20PCh. 4.1 - Prob. 21PCh. 4.1 - Prob. 22PCh. 4.1 - Prob. 23PCh. 4.1 - Prob. 24PCh. 4.1 - Prob. 25PCh. 4.1 - Prob. 26PCh. 4.1 - Prob. 27PCh. 4.1 - Prob. 28PCh. 4.1 - Prob. 29PCh. 4.1 - Prob. 30PCh. 4.1 - Prob. 31PCh. 4.1 - Prob. 32PCh. 4.1 - Prob. 33PCh. 4.1 - Repeat Problem 33, except with the generator...Ch. 4.1 - A particle of mass m moves in the plane with...Ch. 4.1 - Prob. 36PCh. 4.1 - Prob. 37PCh. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.2 - Prob. 7PCh. 4.2 - Prob. 8PCh. 4.2 - Prob. 9PCh. 4.2 - Prob. 10PCh. 4.2 - Prob. 11PCh. 4.2 - Prob. 12PCh. 4.2 - Prob. 13PCh. 4.2 - Prob. 14PCh. 4.2 - Prob. 15PCh. 4.2 - Prob. 16PCh. 4.2 - Prob. 17PCh. 4.2 - Prob. 18PCh. 4.2 - Prob. 19PCh. 4.2 - Prob. 20PCh. 4.2 - Suppose that L1=a1D2+b1D+c1 and L2=a2D2+b2D+c2,...Ch. 4.2 - Suppose that L1x=tDx+x and that L2x=Dx+tx. Show...Ch. 4.2 - Prob. 23PCh. 4.2 - Prob. 24PCh. 4.2 - Prob. 25PCh. 4.2 - Prob. 26PCh. 4.2 - Prob. 27PCh. 4.2 - Prob. 28PCh. 4.2 - Prob. 29PCh. 4.2 - Prob. 30PCh. 4.2 - Prob. 31PCh. 4.2 - Prob. 32PCh. 4.2 - Prob. 33PCh. 4.2 - Prob. 34PCh. 4.2 - Prob. 35PCh. 4.2 - Prob. 36PCh. 4.2 - Prob. 37PCh. 4.2 - Prob. 38PCh. 4.2 - Prob. 39PCh. 4.2 - Prob. 40PCh. 4.2 - Prob. 41PCh. 4.2 - Prob. 42PCh. 4.2 - Prob. 43PCh. 4.2 - Prob. 44PCh. 4.2 - Prob. 45PCh. 4.2 - Prob. 46PCh. 4.2 - Prob. 47PCh. 4.2 - Prob. 48PCh. 4.3 - Prob. 1PCh. 4.3 - Prob. 2PCh. 4.3 - Prob. 3PCh. 4.3 - Prob. 4PCh. 4.3 - Prob. 5PCh. 4.3 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10PCh. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.3 - Prob. 13PCh. 4.3 - Prob. 14PCh. 4.3 - Suppose that a projectile is fired straight upward...Ch. 4.3 - Prob. 16PCh. 4.3 - Prob. 17PCh. 4.3 - Prob. 18PCh. 4.3 - Prob. 19PCh. 4.3 - Prob. 20PCh. 4.3 - Suppose that an artillery projectile is fired from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Suppose that a parachutist with linear drag (m=50 kg, c=12.5kg/s) jumps from an airplane flying at an altitude of a kilometer with a horizontal velocity of 220 m/s relative to the ground. a) Write a system of four differential equations for x,y,vx=dx/dt and vy=dy/dt. b) If theinitial horizontal position is defined as x=0, use Euler’s methods with t=0.4 s to compute the jumper’s position over the first 40 s. c) Develop plots of y versus t and y versus x. Use the plot to graphically estimate when and where the jumper would hit the ground if the chute failed to open.arrow_forwardThe charges and coordinates of two charged particles held fixed in an xy plane are 91 = 3.01 μC, x1 = 4.94 cm, y₁ = 0.559 cm and 92 = -5.09 µC, x2 = -2.10 cm, y2 = 1.11 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (-180°; 180°]) of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge 93 = 5.17 μC be placed such that the net electrostatic force on particle 2 due to particles 1 and 3 is zero? (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Unitsarrow_forwardPLS ANSWERarrow_forward
- Please work out question 44 and show work for explanation of how you came up with your answer.arrow_forward2. The flight of a model rocket can be modeled as follows. During the first 0.15 s the rocket is propelled upward by the rocket engine with a force of 16 N. The rocket then flies up while slowing down under the force of gravity. After it reaches the apex, the rocket starts to fall back down. When its downward velocity reaches 20 m/s, a parachute opens (assumed to open instantly), and the rocket continues to drop at a constant speed of 20 m/s until it hits the ground. Write a program that calculates and plots the speed and altitude of the rocket as a function of time during the flight.arrow_forwardThree balls, with masses of (m;=1 kg, m2=2 kg, m3=3 kg), are fastened to a massless rod of length L=30 cm as shown. The moment of inertia (in kg. m?) about the left end of the rod is: L/2 L/2 Im3 m2 O a. 0.135 O b. 0.015 O c. 0.06 O d. 0.24arrow_forward
- Two particles are fixed to an x axis: particle 1 of charge q₁ = 3.02 × 10-8 C at x = 18.0 cm and particle 2 of charge 92 = -3.61q1 at x = 79.0 cm. At what coordinate on the x axis is the electric field produced by the particles equal to zero? Number i Unitsarrow_forwardThe flight of a model rocket can be modeled as follows. During the first 0.15 s the rocket is propelled upward by the rocket engine with a force of 16 N. The rocket then flies up while slowing down under the force of gravity. After it reaches the apex, the rocket starts to fall back down. When its downward velocity reaches 20 m/s, a parachute opens (assumed to open instantly), and the rocket continues to drop at a constant speed of 20 m/s until it hits the ground. Write a program that calculates and plots the speed and altitude of the rocket as a function of time during the flight. SOLVE WITH MATLAB PLEASEarrow_forwardThe displacement of an oscillating spring can be described by x = A cos(wt) where x = displacement at time t, A = maximum displacement, w = angular frequency, which depends on the spring constant and the mass attached to the spring, and t = time. Find the displacement, x, with maximum displacement A of 4 cm, for times from 0 to 120 seconds with increments of 30 seconds, and angular frequencies from 0.4 to 0.6 radians/sec, with increments of 0.1 radians/sec. The displacement for all combinations of times and angular frequencies needs to be calculated. Use meshgrid. Display your results in a matrix with angular frequencies along the top row and times along the left column like so (you may put zero, 0, or NaN, in the upper left corner:arrow_forward
- The two blocks of Figure 6.17 are attached to each other by a massless string that is wrapped around a frictionless pulley. When the bottom 4.00-kg block is pulled to the left by the constant force P, the top 2.00-kg block slides across it to the right. Find the magnitude of the force necessary to move the blocks at constant speed. Assume that the coefficient of kinetic friction between all surfaces is 0.400.arrow_forwardThe following is used to model a wave that impacts a concrete wall created by the US Navy speed boat.1. Derive the complete piecewise function of F(t) and F()The concrete wall is 2.8 m long with a cross-section area of 0.05 m2. The force at time equal zero is 200 N. It is also known that the mass is modeled as lumped at the end of 1200 kg and Young’s modulus of 3.6 GPa2. Use *Matlab to simulate and plot the total response of the system at zero initial conditions and t0 = 0.5 sarrow_forwardA simple pendulum of length L, has a maximum angular displacement e_max. At one point in its motion, its kinetic energy is K = 3 J and its potential energy is U = 4.2 J. When the pendulum's angular velocity is one-fourth its maximum value (0' = %3D O'_max/4), then its kinetic energy is:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr