
Concept explainers
What assurance is there that the rotor will lock into step at the synchronous speed with the use of a timing relay?

What is the assurance of the synchronization with the use of a timing relay to lock the rotor of a motor at the synchronous speed.
Answer to Problem 1SQ
The only assurance is that if the timing period of the relay is adjusted for the rotor’s maximum acceleration, then the rotor will be near the synchronizing speed.
Explanation of Solution
A motor can be operated at the synchronous speed by exciting the DC field using the definite time-delay relay in a timed, semiautomatic synchronizing installation process. In the starting cycle, the delay-in-closing contact TR of the timing relay is closed to accelerate the rotor until it reaches the synchronizing point. Timing relay has the timer setting; it can be adjusted to the maximum time required to accelerate the rotor to reach the synchronous point, and after completing the synchronizing process of the motor, the attempt may not be successful, or the rotor may reach the maximum near to the synchronous speed.
The time relay based push-button control and timed semiautomatic control of a synchronizing installation process of the rotor are not guaranteed in achieving the synchronization on every attempt; while it fails, it is necessary to repeat the starting cycle by adjusting the timer setting of the timing relay. In every attempt, the only assurance is that if the timing period of the relay is adjusted for the rotor’s maximum acceleration, then the rotor will be near the synchronizing speed.
Conclusion:
Thus, the only assurance is that if the timing period of the relay is adjusted for the rotor’s maximum acceleration, then the rotor will be near the synchronizing speed.
Want to see more full solutions like this?
Chapter 41 Solutions
Electric Motor Control
- Please answer 1 and 2 on the endarrow_forwardDetermine the figure of merit for both DSB AM and FM, provided that the modulating signal is a single-tone signal.arrow_forward+ Preemphasis LHS R signal L RHS signal Frequency doubler Pilot tone (a) + Preemphasis Composite baseband spectrum L+R Pilot tone L-R (DSB-SC) + FM modulator f (kHz) (b) 15 19 23 38 53 Lowpass filter Deemphasis + L Audio amplifier FM discriminator Narrowband filter Frequency doubler Bandpass R Audio ✗ Deemphasis + filter amplifier (c) and (c) FM stereo receiver. FIGURE A.25 FM stereo broadcasting: (a) FM stereo transmitter, (b) spectrum of FM stereo signal,arrow_forward
- 4-3) Similar to Lathi & Ding, Prob. P.4.2-3 For a DSB-SC signal g(t) = 2m(t)cos(4000) transmitting each of the following messages, (a) write an expression for G(f) and (b) sketch the magnitude spectrum |G(f)], specifying the FWHM (full width at half-maximum) of any spectrum peaks. a) m(t) = sinc²(100-50л) b) m(t)=400e-80,000r²arrow_forward4-2) Lathi & Ding, similar to problem 3.8-5. For the filter shown below, with an input signal whose PSD is given by S⭑(f) = П(0.25лf): (a) Find the total input power; (b) Find the transfer function H(f); (c) Find the power spectral density (PSD) of the output signal; (d) Find the total output power of the signal 500 ΚΩ d 1 µF dt y(t)arrow_forward4-1) Distortionless transmission A bandpass signal g(t) of bandwidth B = 2000 Hz centered at f= 5.0x104 Hz is passed through the RC filter below with RC = 4.0x105 radians/s. If over the passband, a variation of less than 2% in both amplitude response and time delay is considered to be distortionless transmission, would g(t) be transmitted without distortion? Find the approximate magnitude response and the approximate time delay for the signal. R w g(1) y(t)arrow_forward
- Fundamentals Of Energy Systems THQ1 Q6arrow_forwardA single phase has two group A and B, 50 Hz, overhead line system has radius of conductor 0.5 cm. alculate the total inductance of the line. a2 a1 6 cm 2 m 3m b₂ m B b₁arrow_forwardA single phase has two group of conductors A & B; where A consists of 3- sub conductors (a, b, c) each of its have a radius of 0.25 cm, and the group B consists of two sub conductors (d, e) each of its have a radius of 0.5 cm. Calculate the inductance of the total system where the distance between the sub conductors is as below. 9m 6m 6m ୦୩ Group A Group Barrow_forward
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning


