
Concept explainers
What assurance is there that the rotor will lock into step at the synchronous speed with the use of a timing relay?

What is the assurance of the synchronization with the use of a timing relay to lock the rotor of a motor at the synchronous speed.
Answer to Problem 1SQ
The only assurance is that if the timing period of the relay is adjusted for the rotor’s maximum acceleration, then the rotor will be near the synchronizing speed.
Explanation of Solution
A motor can be operated at the synchronous speed by exciting the DC field using the definite time-delay relay in a timed, semiautomatic synchronizing installation process. In the starting cycle, the delay-in-closing contact TR of the timing relay is closed to accelerate the rotor until it reaches the synchronizing point. Timing relay has the timer setting; it can be adjusted to the maximum time required to accelerate the rotor to reach the synchronous point, and after completing the synchronizing process of the motor, the attempt may not be successful, or the rotor may reach the maximum near to the synchronous speed.
The time relay based push-button control and timed semiautomatic control of a synchronizing installation process of the rotor are not guaranteed in achieving the synchronization on every attempt; while it fails, it is necessary to repeat the starting cycle by adjusting the timer setting of the timing relay. In every attempt, the only assurance is that if the timing period of the relay is adjusted for the rotor’s maximum acceleration, then the rotor will be near the synchronizing speed.
Conclusion:
Thus, the only assurance is that if the timing period of the relay is adjusted for the rotor’s maximum acceleration, then the rotor will be near the synchronizing speed.
Want to see more full solutions like this?
Chapter 41 Solutions
Electric Motor Control
- P7.2 The capacitors in the circuit shown below have no energy stored in them and then switch "A" closes at time t=0. Switch "B" closes 2.5 milliseconds later. Find v(t) across the 6 μF capacitor for t≥ 0. 500 Ω B 4 µF 20 V 6 µF 7 Σ2 ΚΩ 25 mA + · μεarrow_forwardQ1: If x[n] is a discrete signal and represented by the following equation, what is the value of x[0] and X[-2] Q2: {x[n]}={-0.2,2.2,1.1,0.2,-3.7,2.9,...} a- Assuming that a 5-bit ADC channel accepts analog input ranging from 0 to 4 volts, determine the following: 1- number of quantization levels; 2-step size of the quantizer or resolution; 3- quantization level when the analog voltage is 1.28 volts. 4- binary code produced by the ADC. 5- quantization error. b- Determine whether the linear system is time invariant or not? 1 1 y(n) = x(n) Q3: Evaluate the digital convolution of the following signals using Graphical method. Find: y(0) to y(3) Q4: 2, k = 0,1,2 2, k = 0 h(k) 0 1, k = 3,4 and x(k) elsewhere = 1, k = 1,2 0 elsewhere The temperature (in Kelvin) of an electronic component can be modelled using the following approximation: T(t) [293+15e-Ju(t) A digital thermometer is used to periodically record the component's temperature, taking a sample every 5 seconds. 1- Represent the…arrow_forwardI need solution by hand clearlyarrow_forward
- fin D Q Point 7.57 in Matlab Aarrow_forwardFor the following graphical figure, write the function x(n) and h(n) in: 1. sequential vector 2. functional representation 3. Tabular 2 h0) 32 If signal x(n)-(32130 104032)], describe this signal using: 1. Graphical representation 2. Tabular representation 3. Write its expression 4. Write it as equation 5. Draw it as y(n) - x(n) u(n-3) 6. Sketch it if it is bounded at -2arrow_forwardFor the following Split-phase Manchester waveform, extract the original binary data. Then draw the AMI code for that data. 0arrow_forward1 ΚΩ N₁ m ZL (10+j4) ks2 178/0° V N2 -202 Ω Figure P11.31 Circuit for Problem 11.31.arrow_forwardCari induktasi saluran transmisi terhadapku GMDarrow_forwardA wattmeter is connected with the positive lead on phase “a” of a three-phase system. The negative lead is connected to phase “b”. A separate wattmeter has the positive lead connected to phase “c”. The negative lead of this wattmeter is connected also to phase “b”. If the input voltage is 208 volts line-to-line, the phase sequence is “abc” and the load is 1200 ohm resistors connected in “Y”, what is the expected reading of each of the wattmeters? (Hint: draw a phasor diagram)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning


