bartleby

Concept explainers

Question
Book Icon
Chapter 41, Problem 13P

(a)

To determine

To show that the difference in wavelength between the hydrogen-1 and deuterium spectral lines associated with a particular electron transition is λHλD=(1μHμD)λH.

(a)

Expert Solution
Check Mark

Answer to Problem 13P

The difference in wavelength between the hydrogen-1 and deuterium spectral lines associated with a particular electron transition is λHλD=(1μHμD)λH.

Explanation of Solution

Write the general expression for the energy levels of one electron atoms.

    En=μke2q12q2222n2

Here, En is the energy, μ is the reduced mass of the atom, is the Planck’s constant, n is the principle quantum number, ke is the Coulomb’s constant, q1 is the charge of electron, and q2 is the charge of the nucleus.

Refer the above equation and write an expression for energy released for any transition in hydrogen-1 or proton atom.

    ΔEP=μPke2e422(1nf21ni2)                                                                               (I)

Here, ΔEP is the energy of the transition of proton, e is the charge of an electron, μP is the reduced mass of proton atom, ni is the principle quantum number of the initial state, and nf is the principle quantum number of the final state.

Refer the above equation and write an expression for energy released for any transition in hydrogen-2 or deuterium atom.

    ΔED=μDke2e422(1nf21ni2)                                                                               (II)

Here, ΔED is the energy of transition of deuterium, and μD is the reduced mass of deuterium.

Write the formula for the reduced mass of proton atom.

    μP=memPme+mP                                                                                                    (III)

Here, me is the mass of electron, and mP is the mass of proton nucleus.

Write the formula for the reduced mass of the deuterium atom.

    μD=memDme+mD                                                                                                   (IV)

Here, mD is the mass of deuterium nucleus.

Divide equation (I) and (II).

    ΔEHΔED=μHμD

Energy is inversely proportional to the wavelength. Thus re-write the above equation.

    λDλP=μPμDλD=μPμDλP

Here, λD is the wave length of the spectral line of the deuterium atom, and λP is the wavelength of the spectral line of the proton atom.

Re-write the above equation.

    λHλD=(1μHμD)λH

Conclusion:

The difference in wavelength between the hydrogen-1 and deuterium spectral lines associated with a particular electron transition is λHλD=(1μHμD)λH.

(b)

To determine

The wavelength difference for the Balmer alpha line of hydrogen emitted from a transition from n=3 to n=4.

(b)

Expert Solution
Check Mark

Answer to Problem 13P

The wavelength difference for the Balmer alpha line of hydrogen emitted from a transition from n=3 to n=4 is 0.179nm.

Explanation of Solution

Refer section (a) and write the formula for the ration of the reduced mass of proton.

    μH=memPme+mP                                                                                                    (III)

Here, μH is the reduced mass of hydrogen 1, me is the mass of electron, and mP is the mass of proton nucleus.

Write the formula for the reduced mass of the deuterium atom.

    μD=memDme+mD                                                                                                   (IV)

Here, μD is the reduced mass of deuterium, and mD is the mass of deuterium nucleus.

Write the formula for the ration of reduced mass of proton and deuterium.

    μHμD=(mempme+mp)(me+mDmemD)                                                                           (V)

Write the formula for the difference in wavelength of proton and deuterium.

    λHλD=(1μHμD)λH                                                                                    (VI)

Conclusion:

Substitute 1.007276u for mp, 0.000549u for me, 2.013553u for mD in equation (V).

    μHμD=(1.007276u)(0.000549u+2.013553u)(0.000549u+1.007276u)(2.013553u)=0.999728

Substitute 0.999728 for μH/μD, 656.3nm for λH in equation (VI).

    λHλD=(10.999728)(656.3nm)=0.179nm

The wavelength difference for the Balmer alpha line of hydrogen emitted from a transition from n=3 to n=4 is 0.179nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positive
Part A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/C
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning