MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.70PP
To determine
To explain: The meaning for the spread in the energy of the photons emitted by quantum dots from the following options:
(a) Quantum dots emit photons of more well-defined energies than do other fluorescent materials.
(b) Quantum dots emit photons of less well-defined energies than do other fluorescent materials.
(c) The spread in the energy is affected by the size of the dot, not by the lifetime.
(d) There is no spread in the energy of the emitted photons, regardless of the lifetime.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
=
=
Imagine that we have a box that emits electrons in a definite but unknown spin state y). If
we send electrons from this box through an SGz device, we find that 20% are determined to
have Sz
+ħ and 80% to have S₂ -ħ. If we send electrons from this box through an
SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx
Determine the state vector for electrons emerging from the box. You may assume that the
vector components are real.
-1/ħ.
=
-
For an electron in a 3p state, determine the principal quantum number and the orbital quantum number.
HINT
(a) the principal quantum number
(b) the orbital quantum number
(c) How many different magnetic quantum numbers are possible for an electron in that state?
In the equation above, w is called the work function and it is the minimum
energy required to dislodge an electron from the metal's surface. The value of w
varies from metal to metal, Using Einstein's formula for the energy of a photon,
The work function is
related to the threshol
frequency (and thresk
wave length) as follo
we obtain the following expression for the kinetic energy of the ejected electrons:
hc
w = hv.=
(KE),
= hv
- w = h(v-v
This result helped Einstein explained observations (1) and (2). Since (KE). = mv
must be greater than zero (i.e. m is positive and v is positive), then we know that v
must be greater than ve: Also, a plot of (KE). versus v should be linear and the value
of h is obtained from the slope of the line! The value of h was expected to be (and found
to be) equal to 6.626x10-34 J s!
The "appearance" of h in another physical situation suggested that Planck's quantum
hypothesis was not that crazy after all.
See p
from
Example 2-1: A domestic microwave employs…
Chapter 40 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun?arrow_forwardWhich of the following notations are allowed (that is, which violate none of the rules regarding values of quantum numbers)? 1s1 1d3 4s2 3p7 6h20arrow_forward(a) If one subshell of an atom has nine electrons in it, what is the minimum value of (b) What is the spectroscopic notation for this atom, if this subshell is part of the n = 3 shell?arrow_forward
- A physicist is watching a 15-kg orangutan at a zoo swing lazily in a tire at the end of a rope. He (the physicist) notices that each oscillation takes 3.00 s and hypothesizes that the energy is quantized. (a) What is the difference in energy in joules between allowed oscillator states? (b) What is the value of n for a state where the energy is 5.00 J? (c) Can the quantization be observed?arrow_forwardWhy are X-rays emitted only for electron transitions to inner shells? What type of photon is emitted for transitions between outer shells?arrow_forwardA laser output power is (1.0000x10^-2) W. If the wavelength of the laser is (5.70x10^2) nm, how many photon are emitted by the laser in every second? Note: Your answer is assumed to be reduced to the highest power possible. Your Answer:arrow_forward
- These containers hold solutions of microscopic semiconductor particles of different sizes. The particles glow when exposed to ultraviolet light; the smallest particles glow blue and the largest particles glow red. This is because the energy levels of electrons (i) are spaced farther apart in smaller particles; (ii) are spaced farther apart in larger particles; (iii) have the same spacing in all particles but have higher energies in smaller particles; (iv) have the same spacing in all particles but have higher energies in larger particles; (v) depend on the wavelength of ultraviolet light used.arrow_forward(a) What is the minimum value of 1 for a subshell that has11 electrons in it?(b) If this subshell is in the n = 5 shell, what is the spectroscopic notation for this atom?arrow_forwardBelow is an energy level scheme of a hypothetical one-electron element Mathematicum. The potential energy is taken to be zero for an electron at an infinite distance from the nucleus. (a) How much energy does it take to ionize an electron from the first excited state? What will be the value nf of the final electron state if a photon of energy of 8 eV strikes a Mathematicum atom initially in its first excited state level? (b) What will happen if a photon of energy of 7 eV strikes a Mathematicum atom in its ground state level? Explain what happens. (c) Will photons emitted in the Mathemticum transitions n = 4 to n = 3 eject photoelectrons from a certain metal? The work function Φ of the metal is 2.94 eV. The work function is the minimum photon energy needed in order for an electron to escape the metal. Will electrons be ejected from the metal by the photons? Answer yes or no and explain why. If yes, what is the kinetic energy of the ejected electrons?arrow_forward
- Question in photoarrow_forwardThe light observed that is emitted by a hydrogen atom is explained by a simple model of its structure with one proton in its nucleus and an electron bound to it, but only with internal energies of the atom satisfying EH=−RH/n2EH=−RH/n2 where RHRH is the Rydberg constant and nn is an integer such as 1, 2, 3 ... and so on. When a hydrogen atom in an excited state emits light, the photon carries away energy and the atom goes into a lower energy state. Be careful about units. The Rydberg constant in eV is 13.605693009 eV That would be multiplied by the charge on the electron 1.602× 10-19 C to give 2.18× 10-18 J A photon with this energy would have a frequency f such that E=hf. Its wavelength would be λ = c/f = hc/E. Sometimes it is handy to measure the Rydberg constant in units of 1/length for this reason. You may see it given as 109737 cm-1 if you search the web, so be aware that's not joules. The following questions are intended to help you understand the connection between…arrow_forward(a) If one subshell of an atom has 9 electrons in it, what is the minimum value of l ? (b) What is the spectroscopic notation for this atom, if this subshell is part of the n = 3shell?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax