MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.57P
To determine
The ground level energy and energy difference between the energy adjacent energy levels of a pendulum with a period of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the wavelength of a photon emitted when an electron jumps from the n=3 to the n=2 energy levels of a lithium atom (Z=3)? Express your answer in nanometers and keep three significant digits.
An electron has a total energy of 5 MeV.
a. Find its momentum in units of MeV/c.
and what is the Beta value, if you are able to find it? if not, don't worry about it. Thanks!
Problem 1.
Two State System
Consider an atom with only two states: a ground state with energy 0, and an excited state
with energy A. Determine the mean energy (e) and variance in energy (de). Sketch the
mean energy versus A/k T.
Chapter 40 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the radius of a calcium ion is 0.19 nm, how much energy does it take to singly ionize it? Give your answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits. (with step pls)arrow_forwardSolve the following problem: Use rest mass energy of the electron 0.5 MeV Consider an atomic level with quantum numbers n = 2,l = 1 and maximum total angular momentum. a. Find the first order relativistic correction to this level, in electron- volts. b. Find the first order spin-orbit correction to this level, in electron-volts. C. Use your result in parts a and b to find the energy of that level.arrow_forward(b) Prove that the energy of a trapped particle is quantized. Find the possible relations. Q#2 (a) Explain different types of spectral series of hydrogen atom. Find formula for wavelength of each series. (b) Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H. line. Q#3 (a) Explain Frank Hertz experiment in detail. Discuss its findings. (b) Explain the difference between a MASER and a LASER. Who was the inventor of MASER? Explain both phenomenon in detail.arrow_forward
- Ionization energy is the energy needed to eject an electron from an atom. Compute the ionization energy of a hydrogen atom in its third excited state (?=4). E=arrow_forwardConsider the Bohr model of the doubly ionized lithium ion (3 protons) with a single electron. The ground state energy is -122.4 ev What is the kinetic energy for the electron in orbit? eV Write down the relationship between the kinetic energy K, the momentump and the mass m K= write your answer as a formula, e.g. z=x^4/3y Use these to find the de Broglie wavelength of the electron in this orbit: The de Broglie wavelength is nm If the electron is actually a standing wave, what radius does this suggest for the electron's orbit? ro = nm Assuming classical uniform circular motion for the electron in the Coulomb potential at the radius computed above, what is the total energy of the atom? The potential energy is Oze?/(4tte ro) Ze2/ (4πε ro) O-ze?/(8te ro) Oze/ (8πε r0) The kinetic energy is Οze2/ (4πε r0 ) Ο-Ze2/ (4πε r0) O-Ze2/(8ne r0) Οze2/ (8πε r0) The total energy is Oze2/ (4πε r ) O-Ze2/(4ne r0) O-Ze2/(8te r0) OZe2/ (8πε r0) Hence the total energy is evarrow_forwardThe velocity of an electron is measured to a precision of 62 × 10-³ m/s. What is the minimal uncertainty to which its position can be measured? Please give your answer in units of mm, accurate to one decimal place. I.e, the answer you should enter should have the form: XX.X mm. Answer:arrow_forward
- The electron interference pattern as shown was made by shooting electrons with 50 keV of kinetic energy through two slits spaced 1.0 mm apart. The fringes were recorded on a detector 1.0 m behind the slits.a. What was the speed of the electrons? (The speed is large enough to justify using relativity, but for simplicity do this as a nonrelativistic calculation.)b. Figure is greatly magnified. What was the actual spacing on the detector between adjacent bright fringes?arrow_forwardSuppose that you have 1 mol of hydrogen atoms in the ground state. If the atoms are irradiated with light, what is the minimum number of photons required to excite all of them? [The answer is a number. Use a decimal point. Round your answer to three decimal places, for example 2.000E-10 or 1.140.] *arrow_forward4, 3. Excited Ground state 1(ground state) state 4. 4.85E-19 J 4.42E-19 J 3.98E-19 J 3. 1. 3.03E-19 J 2. 1. 1 (ground state) Energy Energy paquosqe emitted 2) [30] Energy Levels Above is a schematic of a Hydrogen atom with its first 5 energy levels. On the right is the energy emitted from the transitions (lines pointing down on the diagram). Using the knowledge that energy and wavelength are hc, connected ( E =) you will figure out the wavelength for each of these %3D transitions. %3D E. h = Planck constant = 6.63E-34 J*s c = speed of light = 3E8 m/s 2 = wavelength in meters E = energy in Joules (J) %3D hc %3D E will be in meters! Divide by 10-9 for nm If you need help converting this to a color easier, try this website once you get the wavelength in nm: https://academo.org/demos/wavelength-to- colour-relationship/arrow_forward
- For vibrational states, the Boltzmann equation can be written as = exp(-AE/kT) where N, and N, are the populations of the lower and higher energy states, respectively, AE is the energy difference between the states, k is Boltzmann's constant, and Tis the temperature in kelvins. For temperatures of 20°C and 40°C, cakulate the ratios of the intensities of the anti-Stokes and Stokes lines for CCI, at (a) 218 cm-, (b) 459 cm", (c) 790 cm-!. For each temperature and Raman shift, calculate how much more intense the Stokes line is compared to the anti-Stokes line.arrow_forwardHow many particles are present in a closed container if the energy it contains is 98998.19J, and the diatomic oxygen gas is moving at a velocity of 26.52m/s? Use only the whole number for the value of atomic mass unit. Express your answer in proper scientific notation.arrow_forwardConsider a collection of 10,000 atoms of rubidium-87, confined inside a box of volume (10-5 m)3. Calculate €0, the energy of the ground state. £.ix:pr1ess your answer in both joules and electron-volts.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning