University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.53P
(a)
To determine
To plot: The graph between the wave function and distance.
(b)
To determine
To show: Whether the wave function
(c)
To determine
To show: Whether the wave function
(d)
To determine
Why the wave function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle with mass m is moving in three-dimensions under the potential energy U(r), where
r is the radial distance from the origin. The state of the particle is given by the time-independent
wavefunction,
Y(r) = Ce-kr.
Because it is in three dimensions, it is the solution of the following time-independent
Schrodinger equation
dıp
r2
+ U(r)µ(r).
dr
h2 d
EÞ(r) =
2mr2 dr
In addition,
00
1 =
| 4ar?y? (r)dr,
(A(r)) = | 4r²p²(r)A(r)dr.
a. Using the fact that the particle has to be somewhere in space, determine C. Express your
answer in terms of k.
b. Remembering that E is a constant, and the fact that p(r) must satisfy the time-independent
wave equation, what is the energy E of the particle and the potential energy U(r). (As
usual, E and U(r) will be determined up to a constant.) Express your answer in terms of
m, k, and ħ.
A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following.
(a) What is the wavelength (in m) of the wave function for the particle?
m
(b) What is its ground-state energy (in eV)?
eV
(c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box
is the same as the ground-state energy found for the first box in part (b)?
m
(d) What would be the wavelength (in m) of the wave function for the particle in that case?
m
Harmonic oscillator eigenstates have the general form
1 μω ,1/4
μω
AG)(√(-)
n
ħ
In this formula, which part determines the number of nodes in the harmonic oscillator state?
=
y (x)
1
√(™
ћn
2"n!
Holev
1/4
μω
1
2"n!
exp(-1022²)
2ħ
μω
ħ
2"n!
exp
μω χ
2ħ
2
Chapter 40 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- The energy eigenvalues of a particle in a 3-D box of dimensions (a, b, c) is given by E (nx, ny, nz) -2²² (²²² +²2² +²2²) (a) Ten protons are confined in a box of dimension (a, 2a, a) on each side. Calculate the total energy of the ground state of these ten protons if we assume that the protons don't interact with each other. (b) If the ten protons are replaced by 10 neutral hydrogen atoms in the ground state, calculate the total energy resulting from the confinement. Again assume that the hydrogen atoms do not interact with each other. You can treat the mass of proton and hydrogen atom to be identical.arrow_forwardAn electron is trapped in an infinitely deep one-dimensional well of width 0,251 nm. Initially the electron occupies the n=4 state. Suppose the electron jumps to the ground state with the accompanying emission of photon. What is the energy of the photon?arrow_forwardConsider a particle of mass m confined in a three-dimensional cube of length L so small that the motion of the particle is relativistic. Obtain an expression for the allowable energies of the particle in this case. Calculate the ground state energy for an electron if L = 10 fm (10 ^ -5 nm, a typical nuclear dimension)arrow_forward
- Att= 0, an electron is in the eigen state with n = 1 of a one-dimensional shape well So lr| > a/2 V (x) = { 7/D > |r| 0 At t = 0, a uniform electric field of magnitude Eo is applied for a short time interval T, and then it is removed. Use time-dependent theory of perturbations to calculate the probability that an electron is in an eigenstate with n= 2; 3 at time t>T.arrow_forwardAn electron in a one-dimensional region of length L is described by the wavefunction ψn(x) = sin(nπx/L), where n = 1, 2, …, in the range x = 0 to x = L; outside this range the wavefunction is zero. The orthogonality of these wavefunctions is confirmed by considering the integralI= ∫0L sin(nπx/L)sin(mπx/L)dx(a) Use the identity sinAsinB = 1/2{cos(A-B)-cos(A+B)} to rewrite the integrand as a sum of two terms. (b) Consider the case n = 2, m = 1, and make separate sketch graphs of the two terms identified in (a) in the range x = 0 to x = L. (c) Make use of the properties of the cosine function to argue that the area enclosed between the curves and the x axis is zero in both cases, and hence that the integral is zero. (d) Generalize the argument for the case of arbitrary n and m (n ≠ m).arrow_forward∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. The lifetime of hydrogen in the 2p state to decay to the Is ground state is 1.6 x 10-9 s. Estimate the uncertainty ∆E in energy of this excited state. What is the corresponding linewidth in angstroms?arrow_forward
- An electron is bound in a square well of width 1.05 nm and depth U0=6E∞, where E∞ is the ground-state energy for an infinitely deep potential well.If the electron is initially in the ground level, E1=0.625E∞ , and absorbs a photon, what maximum wavelength can the photon have and still liberate the electron from the well?arrow_forward+8 x a nd described by the wave function y(x)= Bsin(kx). Determine i) The energy levels, the omentum, the wave length, the parity and number of nodes for the states n = 1, 2 3 and 4. Suppose V=10 J in the box. What effect has this on a) eigenvalues? b) the eigen functions?arrow_forwardA particle of mass m is subjected to a force F(r) = -VV(r) such that the wave function p(p, t) satisfies the momentum-space Schrödinger equation %3D (p²/2m – aV,) p(p, t) = idp(p, t)/ôt, %3D where h = 1, a is some real constant and V; = /dp? + 8² /əp", + a² /ðp? . Find the force F (r).arrow_forward
- The normalised wavefunction for an electron in an infinite 1D potential well of length 89 pm can be written:ψ=(-0.696 ψ2)+(0.245 i ψ9)+(g ψ4). If the state is measured, there are three possible results (i.e. it is in the n=2, 9 or 4 state). What is the probability (in %) that it is in the n=4 state?arrow_forwardAt time t = 0, a free particle is in a state described by the normalised wave function V(x, 0) where = L A(k) eikz dk, 2π 1/2 a A(k) = (-¹² e-d³²k²/2, and where a is a real positive constant. Estimate the probability that, at time t = 0, the particle's momentum is in the range 1.99h/a ≤ hk ≤ 2.01h/a.arrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning