University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.43P
(a)
To determine
The value of the probability distribution function at
(b)
To determine
The angular frequency at which the probability distribution function oscillates.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a "particle in a box" of length, L, the wavelength for the nth level is given by An
2L
%3D
2п
and the wave function is n(x) = A sin (x) = A sin (x). The energy levels are
пп
%3D
n?h?
given by En :
%3D
8mL2
lPn(x)|2 is the probability of finding the particle at position x in the box. Since the
particle must be somewhere in the box, the integral of this function over the length of the
box must be equal to 1. This is the normalization condition and ensuring that this is the
case is called “normalizing" the wave function.
Find the value of A the amplitude of the wave function, that normalizes it.
Write the normalized wave function for the nth state of the particle in a box.
A hypothetical one dimensional quantum particle has a normalised wave function given by (x) = ax - iß,
where a and 3 are real constants and i = √-1. What is the most likely. x-position, II(x), for the particle to be
found at?
0 11(x) ==
○ II(2) = 0
○ II(r) = 2/
O II(z) =
011(r) =
± √
+√
13
a
QUESTION 9
Consider the case of a 3-dimensional particle-in-a-box. Given: Y = V8 sin(3nx) sin(2ny) sin(4rz)
What is the energy of the system?
O 24h2/8m
O sh?/8m
O none are correct
O 29h2/8m
QUESTION 10
3 πχ
sin
sin () sin
is a normalized wavefunction for the 3D particle-in-a-box.
1.5
O True
O False
Chapter 40 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- A particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forwardThe wave function of a particle in a box is given by ____________ a) A sin(kx) b) A cos(kx) c) Asin(kx) + Bcos(kx) d) A sin(kx) – B cos(kx)arrow_forwardI 4. da 0, Use the WKB approximation to determine the minimum value that Vo must have in order for this potential to allow for a bound state.arrow_forward
- An electron moves with a speed v 1.25 x 10-4c inside a one-dimensional box (V = 0) of length 48.5 nm. The potential is infi nite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?arrow_forwardAn electron is contained in the rectangular box , with widths Lx = 800 pm, Ly =1600 pm, and Lz= 390 pm.What is the electron’s ground-state energy?arrow_forwardA 1-D harmonic oscillator is in the state e(x) = 1//14 [34o(x) - 241(x) + µ2(x)] are the ground, first excited and second excited states, respectively. The probability of finding the oscillator in the ground state is 1 9/14 3//14arrow_forward
- The smallest observed frequency for a transition between states of an electron in a one-dimensional box is 3.0 X 10¹3 s¹. What is the length of the box?arrow_forwardFind the angular momentum and kinetic energy in the z axis for the (cos(30))*e(iΦ)+(sin(30))*e(-iΦ) wave function.arrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forward
- We are going to use Heisenberg's uncertainty principle to estimate the ground- state energy of hydrogen. In our model, the electron is confined in a one- dimensional well with a length about the size of hydrogen, so that Ax = 0.0529 nm. Estimate Ap, and then assume that the ground-state energy is roughly Ap2/2me. (Give your answer in Joules or electron-volts.)arrow_forwardThe electrons within the T-system of conjugated hydrocarbons may be treated as particles confined within a one-dimensional box. The lowest energy transition in the spectrum of a polyene hydrocarbon corresponds to excitation of an electron from the highest occupied energy level to the lowest unoccupied level. If the hydrocarbon contains 6 electrons and has a spectral transition at a wavelength of 278 nm, estimate the effective length of the TT-system. The estimated length = nm. Hint: you will need to fill the energy diagram to know which energy levels are involved in the transition. me = 9.110 x 1031 kg (Enter in e-notation, e.g. 1.23e-4, tolerance ±5%)arrow_forward*24 Figure 39-30 shows a two-dimen- sional, infinite-potential well lying in an xy plane that contains an electron. We probe for the electron along a line that bisects L, and find three points at which the detection probability is maximum. Figure 39-30 Problem 24. Those points are separated by 2.00 nm. Then we probe along a line that bisects L, and find five points at which the detection probability is maximum. Those points are sep- arated by 3.00 nm. What is the energy of the electron?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning