University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.33E
To determine
The ground level energy and energy separation between adjacent levels of wooden block oscillating on the end of the spring.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve the following problem:
Use rest mass energy of the electron 0.5 MeV
Consider an atomic level with quantum numbers n = 2,l = 1 and
maximum total angular momentum.
a. Find the first order relativistic correction to this level, in electron-
volts.
b. Find the first order spin-orbit correction to this level, in electron-volts.
C. Use your result in parts a and b to find the energy of that level.
For small amplitudes of oscillation the motion of a pendulum is simple harmonic. For a pendulum with a period of 0.500 s, find the ground-level energy and the energy difference between adjacent energy levels. Express your results in joules and in electron volts. Are these values detectable?
with explination please..
Chapter 40 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate: a. The mean of the displacement of the oscillator from equilibrium when a harmonic oscillator is in the v=0 and v=1 quantum states? Explain the origin of similarity and differences. b. The mean of the square of the displacement when a harmonic oscillator is in the v=0 and v=1 quantum states? Explain the origin of similarity and differences. 6.arrow_forwardThe electron interference pattern as shown was made by shooting electrons with 50 keV of kinetic energy through two slits spaced 1.0 mm apart. The fringes were recorded on a detector 1.0 m behind the slits.a. What was the speed of the electrons? (The speed is large enough to justify using relativity, but for simplicity do this as a nonrelativistic calculation.)b. Figure is greatly magnified. What was the actual spacing on the detector between adjacent bright fringes?arrow_forward..... An electron is in a field of potential energy V(x) = Vo(1 - ea) where a and Vo are positive constants. a. Sketch the potential energy b. Write the time-independent Schrodinger equation of the electron c. For E < Ve what will be the value of the wavefunction at x = too? d. For E < Vo find the classical turning points in terms of E, Vo, a e. What are the parities of the eigenfunctions of the third, fourth and fifth excited states? f. For E < Vo draw horizontal lines representing energy eigenvalues and sketch the eigenfunctions corresponding the ground state, the first excited state and the second excited state in the same sketch of the potential energy (your sketches of the eigenfunctions should reflect the behavior of the function forarrow_forward
- 2arrow_forwardwith explination please ..arrow_forwardA.The probability of finding a particle in an infinite potential well is always maximum at the midpoint of the boundaries B.Sketch schematically the graphs of intensity of radiation verses wavelength from a blackbody at two different increasing temperatures of the body, indicating the characteristic features of this emission. C .Show that at long wavelengths, Planck’s radiation law reduces to the Rayleigh–Jeans law. Answer allarrow_forward
- Problem 1. Two State System Consider an atom with only two states: a ground state with energy 0, and an excited state with energy A. Determine the mean energy (e) and variance in energy (de). Sketch the mean energy versus A/k T.arrow_forwarda. Conceptually, discuss the particle-wave duality of light. Discuss the implications of this in combination with the de Broglie (pronounced “de Broy”) equation. b. The electron of a hydrogen atom is usually no further than 1.0 Å from the proton. We can therefore say the upper limit of the radius of an isolated hydrogen atom is roughly 1.0 Å. How does the de Broglie wavelength of the electron compare to this radius? (The velocity of an electron in the first principal energy level is about 2.2 x 106 m/s). Explain why wave-particle duality is so important for quantum mechanics, yet not required in macroscopic systems that are well described by classical mechanics. c. Comment as to whether neutrons with velocity 4.14 x 103 m/s may be used to determine structures of molecules in a diffraction-based experiment. You may consider the relevant distance between atoms in molecules to be on the order of 1 Å.arrow_forwardInstructions: Provide what is asked. Only thorough and explicit solutions are rewarded with full points. Write responses in a short bond paper. 1. The rest energy E of an object with rest mass m is given by AlbertEinstein’s eminentequationE = mc2 , where c is the speed of lightin vacuum. Find E for an electron for which (to three significantfigures) m = 9.11 x10-31kg. The SI unit for E is the joule (J);1 J = 1 kg٠m2/s2 .arrow_forward
- C. For a particle of mass 9.10938356×10-31 kg scooting back and forth on a wire of length 13×10-10 m, compute it's energy in the n = 9 state. Use: π = 3.14159265359 and h = 1.0545718×10-34 Js. Eg J. D. What is the rule for the number of nodes for a particle-in-a-box state as a function of its quantum number? Number of nodes = On ΟΙ O n-1 On--1arrow_forwardAs a harmonic oscillator undergoes a transition from the ground state to the first excited state, it absorbs a photon of wavelength = 5.83 micrometers. Determine the ground state energy of the harmonic oscillator in electron volts..arrow_forwardPlease answer the following with a clear, readable and correct solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning