Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 40, Problem 38P

(a)

To determine

The amplitude of the electric field of the helium-neon laser.

(a)

Expert Solution
Check Mark

Answer to Problem 38P

The amplitude of the electric field is 14.0kV/m.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the energy of a single photon.

    E=hcλ                                                                                                             (I)

Here, E is the energy of single photon, h is the Planck’s constant, c is the speed of light in vacuum, and λ is the wavelength.

Write the formula for the power carried by the laser beam.

    P=En                                                                                                           (II)

Here, P is the power carried by the beam, n is the number of photons emitted per second.

Write the formula for the average poynting vector.

    Savg=Pπr2                                                                                                     (III)

Here, Savg is the average poynting vector, P is the power, and r is the radius of the beam.

Write the formula for the average poynting vector in terms of electric field.

    Savg=Emax22μ0c

Here, Emax is the amplitude of electric field, and μ0 is the permeability of free space.

Re-write the above equation to get an expression for Emax.

    Emax=2μ0cSavg                                                                                               (IV)

Conclusion:

Substitute 6.626×1034Js for h, 3.00×108m/s for c, 633nm for λ in equation (I) to get E.

    E=(6.626×1034Js)(3.00×108m/s)633nm=(6.626×1034Js)(3.00×108m/s)633×109m=3.14×1019J

Substitute 3.14×1019J for E, 2.00×1018photons/s for n in equation (II) to get P.

    P=(2.00×1018photons/s)(3.14×1019J/photon)=0.628W

Substitute 0.628W for P, 1.75mm for r in equation (III) to get Savg.

    Savg=0.628Wπ(1.75mm2)2=0.628Wπ(1.75×103m2)2=2.61×105W/m2

Substitute 2.61×105W/m2 for Savg, 4π×107Tm/A for μ0, 3.00×108m/s for c in equation (IV) to determine Emax.

    Emax=2(4π×107Tm/A)(3.00×108m/s)(2.61×105W/m2)=1.40×104N/C=1.40×104V/m=14.0kV/m

The amplitude of the electric field is 14.0kV/m.

(b)

To determine

The amplitude of the magnetic field of the helium-neon laser.

(b)

Expert Solution
Check Mark

Answer to Problem 38P

The amplitude of the magnetic field is 46.8μT.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the magnitude of the magnetic field.

    Bmax=Emaxc

Here, Emax is the amplitude of electric field, Bmax is the amplitude of the magnetic field, and c is the speed of light in free space.

Conclusion:

Substitute 14.0kV/m for Emax, 3.00×108m/s for c to get Bmax.

    Bmax=14.0kV/m3.00×108m/s=1.40×104N/C3.00×108m/s=4.68×105T=46.8μT

The amplitude of the magnetic field is 46.8μT.

(c)

To determine

The force exerted by the beam on a perfectly reflecting surface when it is incident perpendicularly.

(c)

Expert Solution
Check Mark

Answer to Problem 38P

The force exerted on the perfectly reflecting surface is 4.19nN.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the force exerted on the perfectly reflecting surface.

    F=2Pc

Here, F is the force, P is the power, and c is the speed of light in vacuum.

Conclusion:

Substitute 0.628W for P, 3.00×108m/s for c to get F.

    F=2(0.628W)3.00×108 m/s=4.19×109N=4.19nN

The force exerted on the perfectly reflecting surface is 4.19nN.

(d)

To determine

The mass of the ice melted if the beam of laser is absorbed by an ice cube.

(d)

Expert Solution
Check Mark

Answer to Problem 38P

The mass of the ice melted if the beam of laser is absorbed by an ice cube is 10.2g.

Explanation of Solution

The diameter of the beam of laser is 1.75mm. The laser delivers 2.00×1018photons/s. The wavelength of the photon is 633nm.

Write the formula for the mass of ice melted.

    m=PtL

Here, m is the mass of the ice melted, P is the power, L is the latent heat of fusion and t is the time.

Conclusion:

Substitute 0.628W for P, 1.50h for t, 3.33×105J/kg for L to get m.

    m=(0.628W)(1.50h)3.33×105J/kg=(0.628W)[1.50×3600s]3.33×105J/kg=1.02×102kg=10.2g

The mass of the ice melted if the beam of laser is absorbed by an ice cube is 10.2g.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NC
1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?
1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39

Chapter 40 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 40 - Prob. 4OQCh. 40 - Prob. 5OQCh. 40 - Prob. 6OQCh. 40 - Prob. 7OQCh. 40 - Prob. 8OQCh. 40 - Prob. 9OQCh. 40 - Prob. 10OQCh. 40 - Prob. 11OQCh. 40 - Prob. 12OQCh. 40 - Prob. 13OQCh. 40 - Prob. 14OQCh. 40 - Prob. 1CQCh. 40 - Prob. 2CQCh. 40 - Prob. 3CQCh. 40 - Prob. 4CQCh. 40 - Prob. 5CQCh. 40 - Prob. 6CQCh. 40 - Prob. 7CQCh. 40 - Prob. 8CQCh. 40 - Prob. 9CQCh. 40 - Prob. 10CQCh. 40 - Prob. 11CQCh. 40 - Prob. 12CQCh. 40 - Prob. 13CQCh. 40 - Prob. 14CQCh. 40 - Prob. 15CQCh. 40 - Prob. 16CQCh. 40 - Prob. 17CQCh. 40 - The temperature of an electric heating element is...Ch. 40 - Prob. 2PCh. 40 - Prob. 3PCh. 40 - Prob. 4PCh. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - Prob. 7PCh. 40 - Prob. 8PCh. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - Prob. 17PCh. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60APCh. 40 - Prob. 61APCh. 40 - Prob. 62APCh. 40 - Prob. 63APCh. 40 - Prob. 64APCh. 40 - Prob. 65APCh. 40 - Prob. 66APCh. 40 - Prob. 67APCh. 40 - Prob. 68APCh. 40 - Prob. 69APCh. 40 - Prob. 70APCh. 40 - Prob. 71APCh. 40 - Prob. 72CPCh. 40 - Prob. 73CPCh. 40 - Prob. 74CPCh. 40 - Prob. 75CPCh. 40 - Prob. 76CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning