Concept explainers
(a)
The scattering angle of the photon and the electron.
(a)
Answer to Problem 31P
The scattering angle of the photon and the electron is
Explanation of Solution
Write the equation for the momentum of the photon before scattering.
Here,
Write the equation for the energy of the incident photon.
Here,
Put equation (II) in equation (I).
Write the equation for the momentum of the photon after scattering.
Here,
Write the equation for the energy of the scattered photon.
Here,
Put equation (V) in equation (IV).
Refer to figure P40.31,and write the equation for the conservation of momentum in
Here,
Put equations (III) and (VI) in the above equation.
Refer to figure P40.31,and write the equation for the conservation of momentum in
Neglect the trivial solution
Put equation (VI) in the above equation.
Put equation (IX) in equation (VII) and rewrite it for
Write the equation for the Compton shift.
Here,
Put equation (X) in equation (XI).
Solve the above equation.
Rewrite equation (II) for
Put the above equation in equation (XII).
Rewrite the above equation for
Conclusion:
It is given that the energy of the incident photon is
The value of the
Substitute
Therefore, the scattering angle of the photon and the electron is
(b)
The energy and momentum of the scattered photon.
(b)
Answer to Problem 31P
The energy of the scattered photon is
Explanation of Solution
Put equation (X) in equation (V).
Put equation (II) in the above equation.
Conclusion:
Substitute
Substitute
Therefore, the energy of the scattered photon is
(c)
The kinetic energy and momentum of the scattered electron.
(c)
Answer to Problem 31P
The kinetic energy of the scattered electron is
Explanation of Solution
Write the equation for the kinetic energy of the scattered electron.
Here,
Conclusion:
Substitute
Substitute
Therefore, the kinetic energy of the scattered electron is
Want to see more full solutions like this?
Chapter 40 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- A photon having energy 0.640 MeV is scattered by a free electron initially at rest such that the scattering angle of the scattered electron is equal to that of the scattered photon as shown in the figure below. E, (a) Determine the scattering angle of the photon and the electron. photon 60 electron 60 (b) Determine the energy and momentum of the scattered photon. energy ,64 X MeV momentum 2.13e-9 X kg · m/s (c) Determine the kinetic energy and momentum of the scattered electron. kinetic energy 0.177 MeV momentum 2.13e-9 X kg · m/sarrow_forwardEx1/ A photon with momentum p = 1.02 MeV/c is scattered by a stationary free electron. Its momentum on scattering becomes p' = 0.255 MeV/c. At what angle is the photon scattered? Ex2/ A photon is scattered at an angle =120° by a stationary free electron. As a result the electron acquires a kinetic energy of the incident photon. T = 0.45 MeV. Find the energyarrow_forwardA photon with wavelength I = 0.1385 nm scatters from an electron that is initially at rest. What must be the angle between the direction of propagation of the incident and scattered photons if the speed of the electron immediately after the collision is 8.90 x 106 m/s?arrow_forward
- K 1...arrow_forwardA photon with wavelength l = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0 from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?arrow_forwardA photon with momentum 1.32×10-23 kg m/s² scatters off a free electron by an angle of 43 degrees. What percentage of the photon's momentum is lost in the collision?arrow_forward
- A photon of wavelength 0.90638 nm strikes a free electron that is initially at rest. The photon is scattered straight backward. What is the speed of the recoil electron after the collision? V = i ! m/sarrow_forwardPhotons that have a wavelength of 0.00226 nm are Compton scattered off stationary electrons at 33.0 degrees. What is the energy E of the scattered photons? E = ? Jarrow_forwardAn incident X-ray photon of wavelength 0.2011 nm is scattered from an electron that is initially at rest. The photon is scattered at an angle of 0 = 180.0° in the drawing and has a wavelength of 0.2060 nm. Use the conservation of linear momentum to find the momentum gained by the electron. Number IN Units E', X ли E, λ Photon scattering from stationary electronarrow_forward
- C2. A photon having energy Eo= 0.880 MeV is scattered by a free electron initially at rest such that the scattering angle of the scattered electron is equal to that of the scattered photon as shown in the figure below. (a) Determine the scattering angles (in degree) of the photon and the electron. (b) Determine the wavelength (in nm) of the scattered photon. (c) Determine the kinetic energy (in keV) of the scattered electron. Express the values to 3 significant figures, if necessary. Figure C2arrow_forwardProblem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.arrow_forwardA photon with wavelength 0.09 nm is incident on an electron that is initially at rest. If the photon scatters in the backward direction, what is the magnitude of the linear momentum of the electron just after the collision with the photon? (m = 9.109 x 1031 kg)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning