Concept explainers
(a)
The value of the angle
(a)
Answer to Problem 32P
The value of the angle
Explanation of Solution
Write the equation for the momentum of the photon before scattering.
Here,
Write the equation for the energy of the incident photon.
Here,
Put equation (II) in equation (I).
Write the equation for the momentum of the photon after scattering.
Here,
Write the equation for the energy of the scattered photon.
Here,
Put equation (V) in equation (IV).
Refer to figure P40.31,and write the equation for the conservation of momentum in
Here,
Put equations (III) and (VI) in the above equation.
Refer to figure P40.31,and write the equation for the conservation of momentum in
Neglect the trivial solution
Put equation (VI) in the above equation.
Put equation (IX) in equation (VII) and rewrite it for
Write the equation for the Compton shift.
Here,
Put equation (X) in equation (XI).
Solve the above equation.
Rewrite equation (II) for
Put the above equation in equation (XII).
Rewrite the above equation for
Conclusion:
Substitute
Therefore, the scattering angle of the photon and the electron is
(b)
The energy and momentum of the scattered photon.
(b)
Answer to Problem 32P
The energy of the scattered photon is
Explanation of Solution
Put equation (X) in equation (V).
Put equation (II) in the above equation.
Conclusion:
Put equation (XIII) in equation (XV) to find
Substitute
Therefore, the energy of the scattered photon is
(c)
The kinetic energy and momentum of the scattered electron.
(c)
Answer to Problem 32P
The kinetic energy of the scattered electron is
Explanation of Solution
Write the equation for the kinetic energy of the scattered electron.
Here,
Conclusion:
Put equation (XVI) in equation (XVIII).
Put equation (XVII) in equation (VIII).
Therefore, the kinetic energy of the scattered electron is
Want to see more full solutions like this?
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- pls help asaparrow_forwardpls help asaparrow_forward2. Max is swimming across a river that is 42.6 m wide. He can swim at 1.6 m/s and heads 20° to the right of the vertical. There is a current pushing him more to the right and it has a speed of 0.30 m/s. Determine the time it takes him to cross the river and find out how far downstream he ends up. Draw the diagram.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill