
Concept explainers
Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book.
Calculating pH in Amino Acid Solutions III (Integrates with Chapter 2.) Calculate the pH of a 0.3 M solution of (a) leucine hydrochloride, (b) sodium leucinate, and (c) isoelectric leucine.

(a)
To calculate:
The pH of 0.3 M solution of leucine hydrochloride.
Introduction:
The Henderson-Hasselbalch equation for the initial disassociation is:
Here, [Leu0] is the concentration of the Leucine’s neutral form and [Leu+] is the concentration of leucine’s fully protonated form.
Explanation of Solution
Leucine hydrochloride is so called because it has the hydrochloric acid and amino acid leucine. Hydrochloric acid will lower the solution’s pH and form it acidic. This means that within the solution most of the leucine will be in the protonated form or in the neutral form.
The Henderson-Hasselbalch equation for the initial disassociation is:
Here, [Leu0] is the concentration of the Leucine’s neutral form and [Leu+] is the concentration of leucine’s fully protonated form.
The concentration of Leucine of the solution is known. The mass balance of leucine in the solution is:
The charges of all the species in the solution must also be equivalent. The solution contains four charges species: COO- and NH3+ of leucine and H+ and Cl- from hydrochloric acid.
Since the solution is acidic, all the amino groups of leucine are likely to be protonated. This means that NH3+ is equal to the concentration of leucine. The concentration of leucine and the concentration of chloride ions are both 0.3 M, so
The charge balance equation can now be simplified.
The deprotonated carboxyl group will only be present in Leu0, so [COO-] = [Leu0]. The mass balance equation can now be rearranged
The equation can be substituted into the Henderson-Hasselbalch equation and [H+]can be substituted for [COO-].
The Henderson-Hasselbalch equation can now be simplified if the assumption is made that the value of [H+] is significantly less than 0.3 M. This would allow the [H+] term in the denominator to be dropped.
Note: - pH = -log[H+], thus, log[H+] = - pH.

(b)
To determine:
Determine the pH in amino acid solutions.
Introduction:
Amino acids are so named because they all are weak acids. All amino acids have at least two dissociable hydrogens, (diprotic), and some have three dissociable hydrogens and are triprotic.
Explanation of Solution
Sodium leucinate is so called since it has sodium ions in solution having the negative form of leucine. This denotes that the pH of the solution is basic. Most of the leucine in solution will be in the fully deprotonated form of the neutral form.
The Henderson-Hasselbalch equation for the second disassociation is:
Here, [Leu-] is the concentration of the Leucine’s fully deprotonated form and [Leu0] is the concentration of leucine’s neutral form.
The concentration of Leucine of the solution is known. The mass balance of leucine in the solution is:
The charges of all the species in the solution must also be equivalent. The solution contains four charges species: COO- and NH3+ of leucine and Na+ and OH- in solution.
Since the solution is acidic, all the carboxyl group of leucine are expected to be deprotonated. This means that COO- is equal to the concentration of leucine. The concentration of leucine and the concentration of sodium ions are both 0.3 M, so
The charge balance equation can now be simplified.
The protonated amino group will only be present in Leu0, so [NH3+] = [Leu0]. The mass balance equation can now be rearranged
The equation can be substituted into the Henderson-Hasselbalch equation and [OH-]can be substituted for [NH3+].
The Henderson-Hasselbalch equation can now can be simplified if the assumption is made that the value of [OH-] is significantly less than 0.3 M. This would allow the [OH-] term in the numerator to be dropped.
Note: - pOH = -log [OH-], and pOH =14-pH, thus, -log [OH-] = 14 - pH.

(c)
To determine:
Determine the pH in amino acid solutions.
Introduction:
Amino acids are so named because they all are weak acids. All amino acids have at least two dissociable hydrogens, (diprotic), and some have three dissociable hydrogens and are triprotic.
Explanation of Solution
The isoelectric point of leucine is a set pH value which is independent of concentration. The isoelectric point is the pH value at which the solution of leucine is neutral. The value is determined by averaging the pKa values.
Want to see more full solutions like this?
Chapter 4 Solutions
Study Guide With Student Solutions Manual And Problems Book For Garrett/grisham's Biochemistry, 6th
- Show the fate of the proton on the 4-Oxygen molecule of F-1,6-BP. Please include a drawing showing the electron flow that occurs.arrow_forward1. Which one is the major organic product obtained from the following aldol condensation? O NaOH, H₂O heat A B C D Earrow_forwardAn organic chemist ordered the wrong item. She wanted to obtain 1-hydroxy-2-butanone, butinstead ordered 2-hydroxybutyraldehyde. As a good biochemist, show how the organic chemistcould use biological catalysis to make her desired compound. Please show the mechanism by drawing.arrow_forward
- Show the fate of the hydrogen on carbon-2 of glucose. Please draw out the structure using curve arrows to show electron flow.arrow_forward3. Which one of the compounds below is the major product formed by the reaction sequence shown here? CH3 + CH3NO2 NaOH H2, Ni ? nitromethane acetophenone OH OH HO HN- u x x x x Ph A HO -NH2 HO H Ph Ph Ph N- H B Ph NH2 D Earrow_forward4. Only ONE of the five compounds below can be prepared by an aldol condensation in which a single carbonyl compound is treated with base. Which one is it? To solve this problem, reverse the aldol condensation that formed each of these molecules to find out what two molecules came together to make the products. The one in which the two molecules are identical is the answer. Ph Ph ཚིག གནས ག ནཱ ཀ ན ཀནཱ A Ph H B Ph Ph H D Ph. Ph Ph E Harrow_forward
- 5. Which one is the major organic product obtained from the following reaction sequence? First, equimolar amounts of cyclopentanone and LDA are mixed at -78°C. Then propionaldehyde (propanal) is added. Addition of aqueous acid completes the process. LDA, -78°C. 1. 2. H₂O* H A B H 0 D H H Earrow_forward2. Which one is the major organic product obtained from the following reaction? NaOH, H₂O heat A B C D Earrow_forwardCH3CH2CHO + propanal PhCH2CHO 2-phenylacetaldehyde mixture of four products NaOH 10. In the crossed aldol reaction of propanal and 2-phenylacetaldehyde shown above, a mixture of four products will be formed. Which ONE of the compounds below will NOT be formed in this crossed aldol reaction? OH Ph A H OH OH Ph H B OH OH H H H Ph Ph C Ph D Earrow_forward
- An organic chemist ordered the wrong item. She wanted to obtain 1-hydroxy-2-butanone, butinstead ordered 2-hydroxybutyraldehyde. As a good biochemist, show how the organic chemistcould use biological catalysis to make her desired compound.arrow_forwardPredict the products of aldolase catalyzing the reaction with acetone and (S)-3-hydroxybutyraldehyde.arrow_forwardA cancer patient undergoing chemotherapy is taking a protein kinase inhibitor drug. The patientis an avid marathon runner and does not want to miss his upcoming race. Is it a good idea forthis patient to attempt a marathon while on this medication? Explain why or why not.arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
