Ski jumping in Vancouver The 2010 Olympic ski jumping competition was held at Whistler Mountain near Vancouver During a jump, a skier starts near the top of the in-run, the part down which the skier glides at increasing speed before the jump. The Whistler in-run is 116 m long and for the first part is tilted down at about 35 ° below the horizontal There is then a curve that transitions into a takeoff ramp, which is tilted 11 ° below the horizontal The skier flies off this ramp at high speed body tilted forward and skis separated ( Figure 4.15 ). This position exposes a large surface area to the air, which creates lift, extends the time of the jump, and allows the jumper to travel farther In addition, the skier pushes off the exit ramp of the in-run to get a vertical component of velocity when leaving the ramp. The skier lands 125 m or more from the end of the in-run. The landing surface has a complex shape and is tilted down at about 35 ° below the horizontal The skier moves surprisingly close (2 to 6 m) above the snowy surface for most of the jump. The coefficient of kinetic friction between the skis and the snow on the in-run is about 0.05 ± 0.02 , and skiers’ masses are normally small—about 60 kg. We can make some rough estimates about an idealized ski jump with an average in-run inclination of ( 35 ° + 11 ° ) / 2 = 23 ° . Which answer below is closest to the magnitude of the normal force that the idealized in-run exerts on the 60-kg skier? a. 590 N b. 540 N c. 250 N d. 230 N
Ski jumping in Vancouver The 2010 Olympic ski jumping competition was held at Whistler Mountain near Vancouver During a jump, a skier starts near the top of the in-run, the part down which the skier glides at increasing speed before the jump. The Whistler in-run is 116 m long and for the first part is tilted down at about 35 ° below the horizontal There is then a curve that transitions into a takeoff ramp, which is tilted 11 ° below the horizontal The skier flies off this ramp at high speed body tilted forward and skis separated ( Figure 4.15 ). This position exposes a large surface area to the air, which creates lift, extends the time of the jump, and allows the jumper to travel farther In addition, the skier pushes off the exit ramp of the in-run to get a vertical component of velocity when leaving the ramp. The skier lands 125 m or more from the end of the in-run. The landing surface has a complex shape and is tilted down at about 35 ° below the horizontal The skier moves surprisingly close (2 to 6 m) above the snowy surface for most of the jump. The coefficient of kinetic friction between the skis and the snow on the in-run is about 0.05 ± 0.02 , and skiers’ masses are normally small—about 60 kg. We can make some rough estimates about an idealized ski jump with an average in-run inclination of ( 35 ° + 11 ° ) / 2 = 23 ° . Which answer below is closest to the magnitude of the normal force that the idealized in-run exerts on the 60-kg skier? a. 590 N b. 540 N c. 250 N d. 230 N
Ski jumping in Vancouver The 2010 Olympic ski jumping competition was held at Whistler Mountain near Vancouver During a jump, a skier starts near the top of the in-run, the part down which the skier glides at increasing speed before the jump. The Whistler in-run is 116 m long and for the first part is tilted down at about
35
°
below the horizontal There is then a curve that transitions into a takeoff ramp, which is tilted
11
°
below the horizontal The skier flies off this ramp at high speed body tilted forward and skis separated (Figure 4.15). This position exposes a large surface area to the air, which creates lift, extends the time of the jump, and allows the jumper to travel farther In addition, the skier pushes off the exit ramp of the in-run to get a vertical component of velocity when leaving the ramp. The skier lands 125 m or more from the end of the in-run. The landing surface has a complex shape and is tilted down at about
35
°
below the horizontal The skier moves surprisingly close (2 to 6 m) above the snowy surface for most of the jump. The coefficient of kinetic friction between the skis and the snow on the in-run is about
0.05
±
0.02
, and skiers’ masses are normally small—about 60 kg. We can make some rough estimates about an idealized ski jump with an average in-run inclination of
(
35
°
+
11
°
)
/
2
=
23
°
.
Which answer below is closest to the magnitude of the normal force that the idealized in-run exerts on the 60-kg skier?
No chatgpt pls will upvote Already got wrong chatgpt answer
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
Chapter 4 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.