![Applied Statistics in Business and Economics](https://www.bartleby.com/isbn_cover_images/9780077837303/9780077837303_largeCoverImage.gif)
a.
Arrange the data and obtain Xmin and Xmax.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 95CE
The value of Xmin is 0.9.
The value of Xmax is 11.9.
Explanation of Solution
Calculation:
The data state to choose a dataset to prepare a brief descriptive report.
Here, the data chosen is Data set A.
The Data set A represents the percentage of sales in selected industries.
The data set A of sales percent can be sorted either ascending or descending.
Here, the data is sorted in the ascending order.
Sorting:
Software procedure:
Step-by-step procedure to sort the data using the MINITAB software:
- • Choose Data > Sort.
- • In columns to sort by, enter Percent.
- • Under Columns to sort, Choose specified columns.
- • In columns, enter the percent and choose increasing option.
- • In storage location for current columns, choose “specified columns of the current worksheet”.
- • In columns, enter “sorted percent”.
- • Click ok.
Thus, the sorted data has been stored in the column of sorted percent.
Minimum and Maximum:
Step-by-step procedure to find the minimum and maximum using the MINITAB software:
- • Choose Calc>calculator.
- • In store result in variable box, enter Minimum.
- • Under Expression, enter “MIN(Percent)”.
- • Click ok.
- • Choose Calc>calculator.
- • In store result in variable box, enter Maximum.
- • Under Expression, enter “MAX(Percent)”.
- • Click ok.
Data display:
- • Choose data> display data.
- • Select the columns to display as Minimum, Maximum.
- • Click ok.
Output using the MINITAB software is given below:
Thus, the value of Xmin is 0.9 and the value of Xmax is 11.9 respectively.
b.
Construct a histogram.
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 95CE
Histogram:
Output obtained from MINITAB software is:
Explanation of Solution
Calculation:
Software procedure:
- Step by step procedure to draw the Histogram using MINITAB software.
- • Choose Graph > Histogram.
- • Choose Simple, and then click OK.
- • In Graph variables, enter the Percent.
- • Click OK.
Thus, the histogram has been obtained.
By observing the graph, it is clear that the curve is right skewed. Hence, it is appropriate to conclude that the data is approximately right skewed. Thus, the data set A for percent of sales is approximately right skewed.
c.
Find the
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 95CE
The mean score is 3.55.
The median score is 3.
Explanation of Solution
Calculation:
Mean and median:
Software procedure:
Step-by-step procedure to find the mean, the median using the MINITAB software:
- • Choose Stat > Basic Statistics > Display
Descriptive Statistics . - • In Variables enter the columns Percent.
- • Choose option statistics, and select Mean, Median.
- • Click OK.
Output using the MINITAB software is given below:
- Thus, the mean and the median for the data set A are 3.55 and 3 respectively.
Shape of the distribution:
- • For symmetric data, the mean, the median and the
mode are equal. - • For positively skewed data, the mean exceeds the median.
- • For negatively skewed data, the mean is lower than the median.
From the value of mean, median, it is observed that the value of mean is greater than that of the median.
Thus, the data is said to be right skewed or positively skewed.
d.
Find the standard deviation for data set A.
d.
![Check Mark](/static/check-mark.png)
Answer to Problem 95CE
The standard deviation for data set A is 2.749.
Explanation of Solution
Calculation:
Standard deviation:
Software procedure:
Step-by-step procedure to find the mean and standard deviation using the MINITAB software:
- • Choose Stat > Basic Statistics > Display Descriptive Statistics.
- • In Variables enter the columns Percent.
- • Choose option statistics, and select Standard deviation.
- • Click OK.
Output using the MINITAB software is given below:
- Thus, the standard deviation has been obtained.
f.
Standardize the data and identify the outliers and an unusual observations.
f.
![Check Mark](/static/check-mark.png)
Answer to Problem 95CE
The standardized values of dataset A are given below:
-0.9640 | -0.6366 | 0.3456 | 0.3820 | -0.6730 | 0.0909 |
0.7093 | -0.0182 | -0.0182 | -0.9276 | -0.1637 | -0.2001 |
1.4005 | -0.9640 | -0.8912 | -0.0182 | 3.0375 | -0.6002 |
-0.8185 | 1.0367 | -0.2001 | -0.4547 | 0.2728 | -0.6366 |
-0.8912 | -0.5638 | -0.5638 | 0.4911 | -0.3820 | 2.8192 |
There are two outliers and two unusual values in the dataset.
Explanation of Solution
Calculation:
Standardized values:
Software procedure:
Step-by-step software procedure to obtain standardized values using EXCEL software is as follows:
- • Open an EXCEL file.
- • Enter the data in the column A in cells A1 to A32.
- • In cell B1, enter the formula “=STANDARDIZE(A1, 3.55, 2.749)”.
- • Select “ENTER” option.
- • Select and copy the cell B1 and drag till the 30nd cell.
- Output using EXCEL software is given below:
Thus, the standardized values have been obtained using EXCEL.
The outliers in the data set A can be identified using
Empirical Rule:
The Empirical Rule for a Normal model states that:
- • Within 1 standard deviation of mean, 68.26% of all observations will lie.
- • Within 2 standard deviations of mean, 95.44% of all observations will lie.
- • Within 3 standard deviations of mean, 99.73% of all observations will lie.
Empirical rule using MEGASTAT:
Software procedure:
Step-by-step software procedure to obtain Empirical rule using Mega Stat software is as follows:
- • Open an EXCEL file.
- • Enter the data in the column A in cells A1 to A30.
- • From the Add-Ins, Select Mega Stat >Descriptive statistics.
- • A dialogue box appears.
- • In Input
range box, select the input range from Sheet1!$A$1:$A$30. - • From the list box, select Empirical rule.
- • Click “OK”.
Output obtained using MEGA STAT is as follows:
The upper and lower bounds for the intervals indicated by the Empirical rule have been obtained.
Based on the z-scores, the observation has one outlier, that is, the observations with values 11.9 do not lie within the 3-standard deviations limits (–4.697 to 11.797). there is no unusual observation in the data set A.
f.
Find the
f.
![Check Mark](/static/check-mark.png)
Answer to Problem 95CE
The Q1 (25th percentile) is 1.775, Q2 (50th percentile) is 3 and Q3 (75th percentile) is 4.525.
Explanation of Solution
Calculation:
Standard deviation:
Software procedure:
Step-by-step procedure to find the Quartiles using the MINITAB software:
- • Choose Stat > Basic Statistics > Display Descriptive Statistics.
- • In Variables enter the columns Percent.
- • Choose option statistics, and select First Quartile, Median and Third Quartile.
- • Choose option Graphs, and select boxplot of data.
- • Click OK.
Output using the MINITAB software is given below:
- Thus, the Quartiles and boxplot have been obtained.
Observation:
From the boxplot, it is observed that the data set has two outliers within it. The boxplot disclosed that the median is closer to the first quartile, Q1 than it is to the third quartile, Q3, suggesting that the data is right skewed. The whiskers on the two sides are close in length, although it appears that the left whisker is slightly longer.
Want to see more full solutions like this?
Chapter 4 Solutions
Applied Statistics in Business and Economics
- Are the t-statistics here greater than 1.96? What do you conclude? colgPA= 1.39+0.412 hsGPA (.33) (0.094) Find the P valuearrow_forwardA poll before the elections showed that in a given sample 79% of people vote for candidate C. How many people should be interviewed so that the pollsters can be 99% sure that from 75% to 83% of the population will vote for candidate C? Round your answer to the whole number.arrow_forwardSuppose a random sample of 459 married couples found that 307 had two or more personality preferences in common. In another random sample of 471 married couples, it was found that only 31 had no preferences in common. Let p1 be the population proportion of all married couples who have two or more personality preferences in common. Let p2 be the population proportion of all married couples who have no personality preferences in common. Find a95% confidence interval for . Round your answer to three decimal places.arrow_forward
- A history teacher interviewed a random sample of 80 students about their preferences in learning activities outside of school and whether they are considering watching a historical movie at the cinema. 69 answered that they would like to go to the cinema. Let p represent the proportion of students who want to watch a historical movie. Determine the maximal margin of error. Use α = 0.05. Round your answer to three decimal places. arrow_forwardA random sample of medical files is used to estimate the proportion p of all people who have blood type B. If you have no preliminary estimate for p, how many medical files should you include in a random sample in order to be 99% sure that the point estimate will be within a distance of 0.07 from p? Round your answer to the next higher whole number.arrow_forwardA clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forward
- A clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forwardIn the experiment a sample of subjects is drawn of people who have an elbow surgery. Each of the people included in the sample was interviewed about their health status and measurements were taken before and after surgery. Are the measurements before and after the operation independent or dependent samples?arrow_forwardiid 1. The CLT provides an approximate sampling distribution for the arithmetic average Ỹ of a random sample Y₁, . . ., Yn f(y). The parameters of the approximate sampling distribution depend on the mean and variance of the underlying random variables (i.e., the population mean and variance). The approximation can be written to emphasize this, using the expec- tation and variance of one of the random variables in the sample instead of the parameters μ, 02: YNEY, · (1 (EY,, varyi n For the following population distributions f, write the approximate distribution of the sample mean. (a) Exponential with rate ẞ: f(y) = ß exp{−ßy} 1 (b) Chi-square with degrees of freedom: f(y) = ( 4 ) 2 y = exp { — ½/ } г( (c) Poisson with rate λ: P(Y = y) = exp(-\} > y! y²arrow_forward
- 2. Let Y₁,……., Y be a random sample with common mean μ and common variance σ². Use the CLT to write an expression approximating the CDF P(Ỹ ≤ x) in terms of µ, σ² and n, and the standard normal CDF Fz(·).arrow_forwardmatharrow_forwardCompute the median of the following data. 32, 41, 36, 42, 29, 30, 40, 22, 25, 37arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)