Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 8PCE
An electron in a cathode-ray tube is traveling horizontally at 2.10 × 109cm/s when deflection plates give it an upward acceleration of 5.30 × I017cm/s2. (a) How much time does it take for the electron to cover a horizontal distance of 6.20 cm? (b) What is its vertical displacement during this time?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 238U nucleus is moving in the x direction at 5.0×105 m/s when it decays into an alpha particle (4He) and a 234Th nucleus. If the alpha particle moves off at 22 degrees above the x axis with a speed of 1.1×107 m/s, a) What is the speed of the thorium nucleus and b) What is the direction of the motion of the thorium nucleus ( degrees clockwise from the x axis)?
A proton in a synchrotron is moving in a circle of radius 1 km and increasing its speed by v(t) = c1 + c2 t2, where c1 = 2.0 × 105 m/s, c2 = 105 m/s3. (a) What is the proton’s total acceleration at t = 5.0 s? (b) At what time does the expression for the velocity become unphysical?
The position of an electron is given by 8.66tî – 4.57t²ĵ + 8.69k, with t in seconds and in meters. At t = 2.75 s, what are (a) the
x-component, (b) the y-component, (c) the magnitude, and (d) the angle relative to the positive direction of the x axis, of the electron's
velocity (give the angle in the range (-180°, 180°])?
(a) Number
(b) Number
(c) Number
(d) Number
fel a
=
Units
Units
Units
Units
Chapter 4 Solutions
Physics (5th Edition)
Ch. 4.1 - The equations of motion of an object are x = (1...Ch. 4.2 - A sailor drops a pair of binoculars from the crows...Ch. 4.3 - Two objects, A and B, are launched horizontally,...Ch. 4.4 - A projectile is launched and lands at the same...Ch. 4.5 - A baseball player throws a ball to another player...Ch. 4 - What is the acceleration of a projectile when it...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - A projectile is launched from level ground. When...Ch. 4 - In a game of baseball a player hits a high fly...Ch. 4 - A projectile is launched with an initial velocity...
Ch. 4 - A projectile is launched from a level surface with...Ch. 4 - Do projectiles for which air resistance is...Ch. 4 - Two projectiles are launched from the same point...Ch. 4 - A child rides on a pony walking with constant...Ch. 4 - Driving down the highway, you find yourself behind...Ch. 4 - A projectile is launched from the origin of a...Ch. 4 - Predict/Explain As you walk briskly down the...Ch. 4 - A sailboat runs before the wind with a constant...Ch. 4 - As you walk to class with a constant speed of 1.75...Ch. 4 - Starting from rest, a car accelerates at 2.0 m/s2...Ch. 4 - Predict/Calculate A particle passes through the...Ch. 4 - A skateboarder travels on a horizontal surface...Ch. 4 - A hot-air balloon is drifting in level flight due...Ch. 4 - An electron in a cathode-ray tube is traveling...Ch. 4 - Two canoeists start paddling at the same time and...Ch. 4 - Predict/Explain Two divers run horizontally off...Ch. 4 - Predict/Explain Two youngsters dive off an...Ch. 4 - An archer shoots an arrow horizontally at a target...Ch. 4 - Victoria Falls The great, gray-green, greasy...Ch. 4 - A diver runs horizontally off the end of a diving...Ch. 4 - An astronaut on the planet Zircon tosses a rock...Ch. 4 - Predict/Calculate Pitchers Mounds Pitchers mounds...Ch. 4 - Playing shortstop, you pick up a ground ball and...Ch. 4 - Predict/Calculate A crow is flying horizontally...Ch. 4 - A mountain climber jumps a 2.8-m-wide crevasse by...Ch. 4 - Predict/Calculate A white-crowned sparrow flying...Ch. 4 - Pumpkin Toss In Denver, children bring their old...Ch. 4 - Fairgoers ride a Ferris wheel with a radius of...Ch. 4 - Predict/Calculate A swimmer runs horizontally off...Ch. 4 - Baseball and the Washington Monument On August 25,...Ch. 4 - A basketball is thrown horizontally with an...Ch. 4 - Predict/Calculate A ball rolls off a table and...Ch. 4 - A certain projectile is launched with an initial...Ch. 4 - Three projectiles (A, B, and C) are launched with...Ch. 4 - Three projectiles (A, B, and C) are launched with...Ch. 4 - A cannonball is launched at an angle above level...Ch. 4 - A second baseman tosses the ball to the first...Ch. 4 - A soccer ball is kicked with a speed of 15.6 m/s...Ch. 4 - In a game of basketball a forward makes a bounce...Ch. 4 - Predict/Calculate Snowballs are thrown with a...Ch. 4 - In Problem 34, find the direction of motion of the...Ch. 4 - A golfer gives a ball a maximum initial speed of...Ch. 4 - What is the highest tree the ball in the previous...Ch. 4 - The hang time of a punt is measured to be 4.50 s....Ch. 4 - In a friendly game of handball, you hit the ball...Ch. 4 - On a hot summer day a young girl swings on a rope...Ch. 4 - A certain projectile is launched with an initial...Ch. 4 - Punkin Chunkin In Dover, Delaware, a...Ch. 4 - A dolphin jumps with an initial velocity of 12.0...Ch. 4 - A player passes a basketball to another player who...Ch. 4 - A golf ball is struck with a five iron on level...Ch. 4 - Predict/Explain You throw a ball into the air with...Ch. 4 - A football quarterback shows off his skill by...Ch. 4 - A clever inventor has created a device that can...Ch. 4 - Predict/Calculate Volcanoes on lo Astronomers have...Ch. 4 - Predict/Calculate A soccer ball is kicked with an...Ch. 4 - A soccer ball is kicked with an initial speed of...Ch. 4 - An archer shoots an arrow over a castle wall by...Ch. 4 - CE Child 1 throws a snowball horizontally from the...Ch. 4 - CE The penguin to the left in the accompanying...Ch. 4 - CE Dolphins may leap from the water just for the...Ch. 4 - CE Predict/Explain A person flips a coin into the...Ch. 4 - CE Predict/Explain Suppose the elevator in the...Ch. 4 - A train moving with constant velocity travels 170...Ch. 4 - A tennis ball is struck in such a way that it...Ch. 4 - A person tosses a ball for her puppy to retrieve....Ch. 4 - An osprey flies horizontally with a constant speed...Ch. 4 - Predict/Calculate A hot-air balloon rises from the...Ch. 4 - In a friendly neighborhood squirt gun contest a...Ch. 4 - BIO Spitting Llamas An agitated llama may spit to...Ch. 4 - A particle leaves the origin with an initial...Ch. 4 - BIO When the dried-up seed pod of a scotch broom...Ch. 4 - Trick Shot In an Internet video an athlete...Ch. 4 - A shot-putter throws the shot with an initial...Ch. 4 - Two marbles are launched at t = 0 in the...Ch. 4 - Rescue Swimmers Coast Guard rescue swimmers are...Ch. 4 - A football player kicks a field goal, launching...Ch. 4 - A ball thrown straight upward returns to its...Ch. 4 - Predict/Calculate To decide who pays for lunch, a...Ch. 4 - Predict/Calculate A cannon is placed at the bottom...Ch. 4 - A golfer hits a shot to an elevated green. The...Ch. 4 - Shot Put Record A mens world record for the shot...Ch. 4 - Referring to Conceptual Example 4-13, suppose the...Ch. 4 - A Lob Pass Versus a Bullet A quarterback can throw...Ch. 4 - For summertime fun, you decide to combine diving...Ch. 4 - Landing on Mars When the twin exploration rovers,...Ch. 4 - Collision Course A useful rule of thumb in...Ch. 4 - As discussed in Example 4-14, the archerfish hunts...Ch. 4 - Find the launch angle for which the range and...Ch. 4 - A mountain climber jumps a crevasse of width W by...Ch. 4 - Landing on a Different Level A projectile fired...Ch. 4 - A mountain climber jumps a crevasse by leaping...Ch. 4 - Projectiles: Coming or Going? Most projectiles...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Caterpillar Pellets The larvae (caterpillars) of...Ch. 4 - Referring to Example 4-9 (a) At what launch angle...Ch. 4 - Referring to Example 4-9 Suppose that the golf...Ch. 4 - Referring to Example 4-11 Suppose the ball is...Ch. 4 - Predict/Calculate Referring to Example 4-11...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write each number in decimal form.
41. 4.5 × 1012
Applied Physics (11th Edition)
Q5.17 You swing a ball on the end of a lightweight string in a horizontal circle at constant speed. Can the str...
University Physics with Modern Physics (14th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following is a strong gre...
Cosmic Perspective Fundamentals
Explain all answers clearly, with complete sentences and proper essay structure, if needed. An asterisk (*) des...
The Cosmic Perspective Fundamentals (2nd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron, with an initial horizontal velocity of magnitude 4.57 × 109 cm/s, travels into the region between two horizontal metal plates that are electrically charged. In that region, it travels a horizontal distance of 2.25 cm and has a constant downward acceleration of magnitude 2.35 × 1017 cm/s2 due to the charged plates. Find (c) horizontal and (d) vertical velocity components of the electron as it emerges.arrow_forwardYou are the captain of the John Paul Jones, Class-A Battleship on your way to kill the alien ship on the North side of Oahu, Hawaii. Your ship travels 10.36km [W650S] and then 5.60 km [S450W] to meet up with the alien ship. Determine your ship’s total displacement.arrow_forwardParticle originally at rest and located at (0.9m, 0.6m, 1.5m) is subjected to an acceleration of a (6t i+ 12t2 k) m/s?. Determine (a) The velocity vector, and (b) The position (x, y, z) at t = 1 sarrow_forward
- The CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m = 1.67 × 10-27 kg) that move around the accelerator at 5% of the speed of light? (The speed of light is v = 3.00 × 108 m/s.)arrow_forwardA robotic vehicle, or rover, is exploring the surface of Mars. The stationary Mars lander is the origin of coordinates, and the sur-rounding Martian surface lies in the xy-plane. The rover, which we x = 2.0 m - 10.25 m > s22t2represent as a point, has x- and y-coordinates that vary with time:y = 11.0 m > s2t + 10.025 m > s32t3(a) Find the rover’s coordinates and distance from the lander at t = 2.0 s. (b) Find the rover’s displacement and average velocity vectors for the interval t = 0.0 s to t = 2.0 s. (c) Find a general S. Express expression for the rover’s instantaneous velocity vector vS at t = 2.0 s in component form and in terms of magnitude and vdirection. d) Find the instantaneous acceleration at t = 2.0 s. e) a1 , t=1sec a0 , t=0secarrow_forwardA proton in a synchrotron is moving in a circle of radius 1 km and increasing its speed by v(t) = C₁ + c₂t², where c₁ = 2.0 × 105 m/s, c₂ = 105 m/s³. (a) What is the proton's total acceleration at t = 5.0 s?arrow_forward
- A satellite in outer space is moving at a constant velocity of 21.2 m/s in the +y direction when one of its onboard thruster turns on, causing an acceleration of 0.360 m/s² in the +x direction. The acceleration lasts for 40.0 s, at which point the thruster turns off. (a) What is the magnitude of the satellite's velocity when the thruster turns off? m/s (b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis. ° counterclockwise from the +x-axisarrow_forwardPlease answer both the questions. Consider the velocity field, V = (x² + y² − 4)i + (xy — y)j, where x and y are in m and V is in m/s. What is the magnitude of the y-component of the acceleration, ay in m/s², at point (2,1) in the velocity field? Consider the velocity field, V = (x − 2y)i — (2x + y)j. What is the value of the velocity potential function at the point (2,3)?arrow_forwardA magnetic field forces an electron to move in a circle with radial acceleration 3.0 * 1014 m/s2. (a) What is the speed of the electron if the radius of its circular path is 15 cm? (b)What is the period of the motion?arrow_forward
- A spacecraft on its way to Mars has small rocket engines mounted on its hull; one on its left surface and one on its back surface. At a certain time, both = 5.10 m/s², while the one on the back gives engines turn on. The one on the left gives the spacecraft an acceleration component in the x direction of a, 7.30 m/s2. The engines turn off after firing for 170 s, at which point the spacecraft has velocity = 4244 m/s. What was the magnitude and the direction of the spacecraft's initial velocity before the engines were an acceleration component in the y direction of a, %3D components of v Vx 3695 m/s and v, %3D turned on? Express the magnitude as m/s and the direction as an angle measured counterclockwise from the +x axis. magnitude m/s direction ° counterclockwise from the +x-axisarrow_forwardAn electron having an initial horizontal velocity of magnitude1.00 * 109 cm/s travels into the region between two horizontal metalplates that are electrically charged. In that region, the electron travelsa horizontal distance of 2.00 cm and has a constant downward accelerationof magnitude 1.00 * 1017 cm/s2 due to the charged plates.Find (a) the time the electron takes to travel the 2.00 cm, (b) the verticaldistance it travels during that time, and the magnitudes of its (c)horizontal and (d) vertical velocity components as it emerges fromthe region.arrow_forwardin landing rocket experiment . my doctor want me to write a 5 lines about what I have learned from this screenshot. explain each grapharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction to Vectors and Their Operations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=KBSCMTYaH1s;License: Standard YouTube License, CC-BY