Predict/Calculate To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of 5.25 m/s and catches it again when it returns to its initial level. From the point of view of the passenger then, the coin’s initial velocity is (5.25 m/s) y ⌢ . The train’s velocity relative to the ground is (12.1m/s) x ⌢ . (a) What is the minimum speed of the coin relative to the ground during its flight? At what point in the coin s flight does this minimum speed occur? Explain. (b) Find the initial speed and direction of the coin as seen by an observer on the ground. (c) Use the expression for y max derived in Example 4-14 to calculate the maximum height of the coin, as seen by an observer on the ground. (d) What is the maximum height of the coin from the point of view of the passenger, who sees only one-dimensional motion?
Predict/Calculate To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of 5.25 m/s and catches it again when it returns to its initial level. From the point of view of the passenger then, the coin’s initial velocity is (5.25 m/s) y ⌢ . The train’s velocity relative to the ground is (12.1m/s) x ⌢ . (a) What is the minimum speed of the coin relative to the ground during its flight? At what point in the coin s flight does this minimum speed occur? Explain. (b) Find the initial speed and direction of the coin as seen by an observer on the ground. (c) Use the expression for y max derived in Example 4-14 to calculate the maximum height of the coin, as seen by an observer on the ground. (d) What is the maximum height of the coin from the point of view of the passenger, who sees only one-dimensional motion?
Predict/Calculate To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of 5.25 m/s and catches it again when it returns to its initial level. From the point of view of the passenger then, the coin’s initial velocity is (5.25 m/s)
y
⌢
. The train’s velocity relative to the ground is (12.1m/s)
x
⌢
. (a) What is the minimum speed of the coin relative to the ground during its flight? At what point in the coin s flight does this minimum speed occur? Explain. (b) Find the initial speed and direction of the coin as seen by an observer on the ground. (c) Use the expression for ymax derived in Example 4-14 to calculate the maximum height of the coin, as seen by an observer on the ground. (d) What is the maximum height of the coin from the point of view of the passenger, who sees only one-dimensional motion?
The cylindrical beam of a 12.7-mW laser is 0.920 cm in diameter. What is the rms value of the electric field?
V/m
Consider a rubber rod that has been rubbed with fur to give the rod a net negative charge, and a glass rod that has been rubbed with silk to give it a net positive charge. After being charged by contact by the fur and silk...?
a. Both rods have less mass
b. the rubber rod has more mass and the glass rod has less mass
c. both rods have more mass
d. the masses of both rods are unchanged
e. the rubber rod has less mass and the glass rod has mroe mass
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.