EBK COLLEGE PHYSICS
10th Edition
ISBN: 8220100853050
Author: Vuille
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 85AP
What horizontal force must ho applied to a large block of mass M shown in Figure P4.85 so that the blocks remain stationary relative to M? Assume all surfaces and the pulley are frictionless. Notice that the force exerted by the string accelerates m2.
Figure P4.85
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Chapter 4 Solutions
EBK COLLEGE PHYSICS
Ch. 4.3 - Which of the following statements are true? (a) An...Ch. 4.3 - Which has greater value, a newton of gold on Earth...Ch. 4.3 - Respond to each statement, true or false: (a) No...Ch. 4.4 - A small sports car collides head-on with a massive...Ch. 4.5 - Consider the two situations shown in Figure 4.30,...Ch. 4.5 - For the woman being pulled forward on the toboggan...Ch. 4.6 - If you press a book flat against a vertical wall...Ch. 4.6 - A crate is sitting in the center of a flatbed...Ch. 4.6 - Suppose your friend is sitting on a sled and asks...Ch. 4 - Physics Review A hockey player strikes a puck,...
Ch. 4 - Four forces act on an object, given by A = 40.0 N...Ch. 4 - A force of 30.0 N is applied in the positive...Ch. 4 - What would be the acceleration of gravity at the...Ch. 4 - Two monkeys are holding onto a single vine of...Ch. 4 - Two identical strings making an angle of = 30.0...Ch. 4 - Calculate the normal force on a 15.0 kg block in...Ch. 4 - A horizontal force of 95.0 N is applied to a...Ch. 4 - Prob. 9WUECh. 4 - A block of mass 12.0 kg is sliding at an initial...Ch. 4 - A man exerts a horizontal force of 112 N on a...Ch. 4 - An Atwoods machine (Fig. 4.38) consists of two...Ch. 4 - A block of mass m1= 10 kg is on a frictionless...Ch. 4 - A passenger sitting in the rear of a bus claims...Ch. 4 - A space explorer is moving through space far from...Ch. 4 - (a) If gold were sold by weight, would you rather...Ch. 4 - If you push on a heavy box that is at rest, you...Ch. 4 - A ball is held in a persons hand. (a) Identify all...Ch. 4 - A weight lifter stands on a bathroom scale. (a) As...Ch. 4 - (a) What force causes an automobile to move? (b) A...Ch. 4 - If only one force acts on an object, can it be in...Ch. 4 - In the: motion picture It Happened One Night...Ch. 4 - Analyze the motion of a rock dropped in water in...Ch. 4 - Identify the action-reaction pairs in the...Ch. 4 - Draw a free-body diagram for each of the following...Ch. 4 - In a tug-of-war between two athletes, each pulls...Ch. 4 - Suppose you are driving a car at a high speed. Why...Ch. 4 - As a block slides down a frictionless incline,...Ch. 4 - A crate remains stationary after it has been...Ch. 4 - In Figure 4.4, a locomotive has broken through the...Ch. 4 - If an object is in equilibrium, which of the...Ch. 4 - A truck loaded with sand accelerates along a...Ch. 4 - A large crate of mass m is placed on the back of a...Ch. 4 - Which of the following statements are true? (a) An...Ch. 4 - The heaviest invertebrate is the giant squid,...Ch. 4 - A football punter accelerates a football from rest...Ch. 4 - A 6.0-kg object undergoes an acceleration of 2.0...Ch. 4 - One or more external forces are exerted on each...Ch. 4 - A bag of sugar weighs 5.00 lb on Earth. What would...Ch. 4 - A freight train has a mass of 1.5 107 kg. If the...Ch. 4 - A 75-kg man standing on a scale in an elevator...Ch. 4 - Consider a solid metal sphere (S) a few...Ch. 4 - As a fish jumps vertically out of the water,...Ch. 4 - A 5.0-g bullet leaves the muzzle of a rifle with a...Ch. 4 - A boat moves through the water with two forces...Ch. 4 - Two forces are applied to a car in an effort to...Ch. 4 - A 970.-kg car starts from rest on a horizontal...Ch. 4 - An object of mass m is dropped from the roof of a...Ch. 4 - After falling from rest from a height of 30.0 m, a...Ch. 4 - The force exerted by the wind on the sails of a...Ch. 4 - (a) Find the tension in each cable supporting the...Ch. 4 - A certain orthodontist uses a wire brace to align...Ch. 4 - A 150-N bird feeder is supported by three cables...Ch. 4 - The leg and cast in Figure P4.40 weigh 220 N (w1)....Ch. 4 - Two blocks each of mass m are fastened to the top...Ch. 4 - Two blocks each of mass m = 3.50 kg are fastened...Ch. 4 - The distance between two telephone poles is 50.0...Ch. 4 - The systems shown in Figure P4.58 are in...Ch. 4 - A 5.0-kg bucket of water is raised from a well by...Ch. 4 - A crate of mass m = 32 kg rides on the bed of a...Ch. 4 - Two blocks of masses m and 2m are held in...Ch. 4 - Two packing crates of masses 10.0 kg and 5.00 kg...Ch. 4 - Assume the three blocks portrayed in Figure P4.59...Ch. 4 - A block of mass m = 5.8 kg is pulled up a = 25...Ch. 4 - A setup similar to the one shown in Figure P4.53...Ch. 4 - Two blocks of masses m1 and m2 (m1 m2) are placed...Ch. 4 - A 276-kg glider is being pulled by a 1 950-kg jet...Ch. 4 - In Figure P4.63, the light, taut, unstretchable...Ch. 4 - (a) An elevator of mass m moving upward has two...Ch. 4 - An object with mass m1 = 5.00 kg rests on a...Ch. 4 - A 1.00 103 car is pulling a 300.-kg trailer....Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A dockworker loading crates on a ship finds that a...Ch. 4 - In Figure P4.64, m1 = 10. kg and m2 = 4.0 kg. The...Ch. 4 - A 1.00 103-N crate is being pushed across a level...Ch. 4 - A block of mass 3m is placed on a frictionless...Ch. 4 - Consider a large truck carrying a heavy load, such...Ch. 4 - A crate of mass 45.0 kg is being transported on...Ch. 4 - Objects with masses m1 = 10.0 kg and m2 = 5.00 kg...Ch. 4 - A hockey puck struck by a hockey stick is given an...Ch. 4 - The coefficient of static friction between the...Ch. 4 - A student decides to move a box of books into her...Ch. 4 - An object falling under the pull of gravity is...Ch. 4 - A car is traveling at 50.0 km/h on a flat highway....Ch. 4 - A 3.00-kg block starts from rest at the top of a...Ch. 4 - A 15.0-lb block rests on a horizontal floor, (a)...Ch. 4 - To meet a U.S. Postal Service requirement,...Ch. 4 - Objects of masses m1 = 4.00 kg and m2 = 9.00 kg...Ch. 4 - The person in Figure P4.49 weighs 170. lb. Each...Ch. 4 - As a protest against the umpires calls, a baseball...Ch. 4 - Three objects are connected on a table as shown in...Ch. 4 - The force exerted by the wind on a sailboat is...Ch. 4 - (a) What is the resultant force exerted by the two...Ch. 4 - (a) What is the minimum force of friction required...Ch. 4 - A boy coasts down a hill on a sled, reaching a...Ch. 4 - A woman at an airport is towing her 20.0-kg...Ch. 4 - A box rests on the back of a truck. The...Ch. 4 - Three objects are connected by light strings as...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - A high diver of mass 70.0 kg steps off a board...Ch. 4 - A 2.00-kg aluminum block and a 6.00-kg copper...Ch. 4 - An object of mass m1 hangs from a string that...Ch. 4 - Two boxes of fruit on a frictionless horizontal...Ch. 4 - Measuring coefficients of friction A coin is...Ch. 4 - A fisherman poles a boat as he searches for his...Ch. 4 - A rope with mass m, is attached to a block with...Ch. 4 - A car accelerates down a hill (Fig. P4.87), going...Ch. 4 - Prob. 74APCh. 4 - The parachute on a race car of weight 8 820 N...Ch. 4 - On an airplanes takeoff, the combined action of...Ch. 4 - The board sandwiched between two other boards in...Ch. 4 - A sled weighing 60.0 N is pulled horizontally...Ch. 4 - A 72-kg man stands on a spring scale in an...Ch. 4 - A magician pulls a tablecloth from under a 200-g...Ch. 4 - An inventive child wants to reach an apple in a...Ch. 4 - A fire helicopter carries a 620-kg bucket of water...Ch. 4 - A crate of weight Fg is pushed by a force P on a...Ch. 4 - In Figure P1.84, the pulleys and the cord are...Ch. 4 - What horizontal force must ho applied to a large...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Help me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forwardThree point-like charges are placed at the corners of a square as shown in the figure, 28.0 cm on each side. Find the minimum amount of work required by an external force to move the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.arrow_forward
- A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis. x2 = 19.0 cmarrow_forwardFour point-like charges are placed as shown in the figure, three of them are at the corners and one at the center of a square, 36.0 cm on each side. What is the electric potential at the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc Varrow_forwardPLS HELparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY