
(a)
The net force acting on the skydiver of weight
(a)

Answer to Problem 7SP
The net force acting on the skydiver of weight
Explanation of Solution
Given info: The weight of the skydiver is
If the air resistive force will increases by
Write the net force acting on the skydiver.
Take
The only force acting downward is the gravitational force and force acting in the upward direction is the air resistive force.
Therefore substitute
Thus the net force is in the downward direction.
Conclusion:
Thus, the net force acting on the skydiver of weight
(b)
The acceleration of the diver at the velocity.
(b)

Answer to Problem 7SP
The acceleration of the diver at the velocity is
Explanation of Solution
Given info: The mass of the man is
Write the expression for the mass of the diver.
Here,
Substitute
Write the expression for the net force on the diver.
Here,
Rearrange the above equation to get
Substitute
Conclusion:
Thus, the acceleration of the diver at the velocity is
(c)
The terminal velocity of the skydiver.
(c)

Answer to Problem 7SP
The terminal velocity of the skydiver is
Explanation of Solution
Given info: increase in the air resistive force for every
The diver will attain terminal velocity if the upward force is equal to the weight of the diver.
The weight of the diver is
The increase in the air resistive force, for every
Therefore at this velocity upward force becomes
Conclusion:
Thus, the terminal velocity of the skydiver is
(d)
What would happen to the velocity of the skydiver if for some reason his velocity exceeded the terminal velocity?
(d)

Answer to Problem 7SP
This will cause wind burn due to increase in the frictional force and sudden change in velocity to the terminal velocity.
Explanation of Solution
Terminal velocity is the uniform velocity of falling body in a viscous medium if the upward force is equal to downward velocity.
If the velocity is exceeded the terminal velocity, it will cause increase in the resistive force and dissipation of energy in the form of heat occurs. This may create wind burn. This resistive for reduce the velocity to terminal velocity.
Conclusion:
Thus, exceeding velocity more than terminal velocity will cause wind burn due to increase in the frictional force and sudden change in velocity to the terminal velocity.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- For number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forwardShow work using graphing paperarrow_forward
- Can someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forwardIn the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forward
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





