Concept explainers
A skydiver has a weight of 850 N. Suppose that the air-resistive force acting on the diver increases in direct proportion to his velocity such that for every 10 m/s that the diver’s velocity increases, the force of air resistance increases by 100 N.
- a. What is the net force acting on the skydiver when his velocity is 30 m/s?
- b. What is the acceleration of the diver at this velocity?
- c. What is the terminal velocity of the skydiver?
- d. What would happen to the velocity of the skydiver if for some reason (perhaps a brief down draft) his velocity exceeded the terminal velocity? Explain.
(a)
The net force acting on the skydiver of weight
Answer to Problem 7SP
The net force acting on the skydiver of weight
Explanation of Solution
Given info: The weight of the skydiver is
If the air resistive force will increases by
Write the net force acting on the skydiver.
Take
The only force acting downward is the gravitational force and force acting in the upward direction is the air resistive force.
Therefore substitute
Thus the net force is in the downward direction.
Conclusion:
Thus, the net force acting on the skydiver of weight
(b)
The acceleration of the diver at the velocity.
Answer to Problem 7SP
The acceleration of the diver at the velocity is
Explanation of Solution
Given info: The mass of the man is
Write the expression for the mass of the diver.
Here,
Substitute
Write the expression for the net force on the diver.
Here,
Rearrange the above equation to get
Substitute
Conclusion:
Thus, the acceleration of the diver at the velocity is
(c)
The terminal velocity of the skydiver.
Answer to Problem 7SP
The terminal velocity of the skydiver is
Explanation of Solution
Given info: increase in the air resistive force for every
The diver will attain terminal velocity if the upward force is equal to the weight of the diver.
The weight of the diver is
Since increase in the air resistive force for every
Therefore at this velocity upward force becomes
Conclusion:
Thus, the terminal velocity of the skydiver is
(d)
What would happen to the velocity of the skydiver if for some reason his velocity exceeded the terminal velocity?
Answer to Problem 7SP
This will cause windburn due to increase in the frictional force and sudden change in velocity to the terminal velocity.
Explanation of Solution
Terminal velocity is the uniform velocity of falling body in a viscous medium if the upward force is equal to downward velocity.
If the velocity is exceeded the terminal velocity, it will cause increase in the resistive force and dissipation of energy in the form of heat occurs. This may create wind burn. This resistive for reduce the velocity to terminal velocity.
Conclusion:
Thus, exceeding velocity more than terminal velocity will cause windburn due to increase in the frictional force and sudden change in velocity to the terminal velocity.
Want to see more full solutions like this?
Chapter 4 Solutions
Physics of Everyday Phenomena
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College