
Concept explainers
Two blocks tied together by a horizontal string are being pulled across the table by a horizontal force of 46 N, as shown in the diagram below. The 3-kg block has a 6-N frictional force exerted on it by the table, and the 7-kg block has an 8-N frictional force acting on it.
- a. What is the net force acting on the entire two-block system?
- b. What is the acceleration of this system?
- c. What force is exerted on the 3-kg block by the connecting string? (Consider only the forces acting on this block. Its acceleration is the same as that of the entire system.)
- d. Find the net force acting on the 7-kg block and calculate its acceleration. How does this value compare to that found in part b?
(a)

The net force acting on the entire two-block system.
Answer to Problem 5SP
The net force acting on the entire two-block system is
Explanation of Solution
Given info: The horizontal force acting on
Write the expression for the net horizontal force.
Here,
Total force on the left direction is the sum of
That is,
Substitute
Conclusion:
Thus, the net force acting on the entire two-block system is
(b)

The acceleration of the system.
Answer to Problem 5SP
The acceleration of the system is
Explanation of Solution
Given info: The masses of the blocks are
Write the expression for the acceleration of the horizontal acceleration of the block.
Here,
Total mass of the system is
Substitute
Conclusion:
Thus, the acceleration of the system is
(c)

The force acting on the
Answer to Problem 5SP
The force acting on the
Explanation of Solution
Given info: The horizontal force acting on
Let
Write the expression for the net force on
Here,
Substitute
This net force is acting along the direction of acceleration. That is, along the right direction.
Write the expression for the net force on the
Here,
The negative sign indicate that the force of tension is along the right direction whereas the
Substitute
Therefore, the force acting on the
Conclusion:
Thus, the force acting on the
(d)

The net force and acceleration of
Answer to Problem 5SP
The net force on the
Explanation of Solution
Given info: The horizontal force acting on
Write the expression for the net force on the
Here,
Substitute
Write the expression for the net acceleration on
Here,
Substitute
This is same as the net acceleration obtained in part
Conclusion:
Thus, the net force on the
Want to see more full solutions like this?
Chapter 4 Solutions
Physics of Everyday Phenomena
- No chatgpt pls will upvotearrow_forwardYou are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forward
- A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forward
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





