Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero A _______________ is an example that proves your conjecture was false.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero A _______________ is an example that proves your conjecture was false.
Solution Summary: The author explains that a counter example is an example that proves your conjecture was false.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence.
d
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
x
=
−
b
±
b
2
−
4
a
c
2
a
x
=
−
b
2
a
arbitrary
binomial
coefficient
conjecture
counterexample
deductive reasoning
equivalent
expanded form
exponential decay
exponential function
exponential growth
f(x)
factored form
factoring
factors
function
growth factor
hypotenuse
inductive reasoning
inverse variation
isosceles
margin of error
parabola
parameters
perfect squares
polynomial
prime polynomial
profit
quadratic function
revenue
right triangle
standard form
symmetry
terms
trinomial
vertex
zero
A _______________ is an example that proves your conjecture was false.
a
C
d
2
1
-1
0
1
2
3
-1
Graph of f'(x)
(5) The graph of f'(x), the derivative of f(x), is shown in the figure above. The line tangent to the graph
of f'(x) at x=0 is vertical and f'(x) is not differentiable at x = 1. Which of the following statements is
true?
(a) f'(x) does not exist at x = 0.
(b) f(x) has a point of inflection at x = 1.
(c) f(x) has a local maximum at x = 0.
(d) f(x) has a local maximum at x = 1.
ball is drawn from one of three urns depending on the outcomeof a roll of a dice. If the dice shows a 1, a ball is drawn from Urn I, whichcontains 2 black balls and 3 white balls. If the dice shows a 2 or 3, a ballis drawn from Urn II, which contains 1 black ball and 3 white balls. Ifthe dice shows a 4, 5, or 6, a ball is drawn from Urn III, which contains1 black ball and 2 white balls. (i) What is the probability to draw a black ball? [7 Marks]Hint. Use the partition rule.(ii) Assume that a black ball is drawn. What is the probabilitythat it came from Urn I? [4 Marks]Total marks 11 Hint. Use Bayes’ rule
Let X be a random variable taking values in (0,∞) with proba-bility density functionfX(u) = 5e^−5u, u > 0.Let Y = X2 Total marks 8 . Find the probability density function of Y .
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY