Concept explainers
(a)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of aqueous ammonia and nitric acid are to be stated.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(a)

Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between aqueous ammonia and nitric acid is shown below.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between aqueous ammonia and nitric acid is shown below.
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(b)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of aqueous barium hydroxide and hydrochloric acid are to be stated.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(b)

Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between barium hydroxide and hydrochloric acid is shown below.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between barium hydroxide and hydrochloric acid is shown below.
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(c)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of perchloric acid and solid iron
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(c)

Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between perchloric acid and solid iron
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation. Therefore, the net ionic equation representing the formation of precipitate is shown below.
(d)
Interpretation: The molecular equation, complete ionic equation and net ionic equation representing the reaction of solid silver hydroxide and hydrobromic acid are to be stated.
Concept introduction: The chemical equation in which molecules of reactants and products are present is termed as molecular equation. The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the chemical equation which contains ions only is termed as complete ionic equation. The equation obtained by the elimination of spectator ions from the complete ionic equation is known as net ionic equation.
(d)

Answer to Problem 58E
The molecular equation is shown below.
The complete ionic equation is shown below.
The net ionic equation is
Explanation of Solution
The molecular equation representing the reaction between solid silver hydroxide and hydrobromic acid is shown below.
The substance that are strong electrolytes will get dissociate into their constituent ions. Therefore, the complete ionic equation representing the reaction between solid silver hydroxide and hydrobromic acid is shown below.
The net ionic equation is obtained by eliminating the spectator ions present on left and right side of the complete ionic equation.
Therefore, the net ionic equation representing the formation of precipitate is shown below.
Want to see more full solutions like this?
Chapter 4 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardWhat is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





