Concept explainers
(a)
Interpretation:
The following equation should be balanced in acidic medium.
Concept Introduction:
The
A reduction or an oxidation reaction is known as half reaction.
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both
(a)

Answer to Problem 90E
The balanced equation is:
Explanation of Solution
The given reaction is:
The above reaction is separated (oxidation-reduction reaction) as:
Balance the atoms other than hydrogen and oxygen.
Balance oxygen atoms.
Balance hydrogen atoms.
Balance charge and number of electrons.
Multiply equation (2) by 8
Add both equations.
The balanced equation is written as:
Simplify the equation as:
(b)
Interpretation:
The minimum mass of solid potassium iodide and the minimum volume of 3.00 M
Concept Introduction:
Mole is SI unit which is used to measure the quantity of the substance. It is the quantity of a substance which contains same number of atoms as present in accurately 12.00 g of carbon-12 is known as mole.
Number of moles of a compound is defined as the ratio of given mass of the compound to the molar or molecular mass of the compound.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles to the volume of solution in L.
The mathematical expression is:
(b)

Answer to Problem 90E
Minimum mass of
Explanation of Solution
Given information:
Mass of potassium iodate = 0.6013 g
Molar mass of potassium iodate = 214.0 g/mole
Number of moles =
Put the values,
Number of moles of potassium iodate =
Number of moles of potassium iodate =
The balanced equation is:
According to the reaction, ratio between
Thus, number of moles of
=
Molar mass of
Minimum mass of
= 3.732 g
Number of moles of
Molarity of
Volume =
Put the values,
Minimum volume of
=
(c)
Interpretation:
The balance equation for the reaction between
Concept Introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
A reduction or an oxidation reaction is known as half reaction.
Balance all atoms including oxygen and hydrogen atoms are carried out by addition of water molecule (to balance oxygen) and hydrogen ion (to balance hydrogen) in the half reactions. Number of electrons and charge should be balanced after that makes the number of electrons equal in both oxidation and reduction reactions by multiplying with an integer. The last step is to add both half reactions.
(c)

Answer to Problem 90E
The balanced equation is written as:
Explanation of Solution
The reaction between
The above reaction is separated (oxidation-reduction reaction) as:
Balance all the atoms other than hydrogen and oxygen.
Balance oxygen atoms.
Balance hydrogen atoms.
Balance charge and number of electrons.
Add both equations.
The balanced equation is written as:
(d)
Interpretation:
The molarity of
Concept Introduction:
Mole is SI unit which is used to measure the quantity of the substance. It is the quantity of a substance which contains same number of atoms as present in accurately 12.00 g of carbon-12 is known as mole.
Number of moles of a compound is defined as the ratio of given mass of the compound to the molar or molecular mass of the compound.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles to the volume of solution in L.
The mathematical expression is:
(d)

Answer to Problem 90E
Molarity of
Explanation of Solution
Given information:
Molarity of
Volume of
Volume of
The mathematical expression for calculating molarity is:
Rearrange the above formula in terms of number of moles:
Convert the given volume in mL to L.
Since, 1L=1000 mL
Thus, volume in L =
= 0.025 L
Now,
=
The balanced equation is:
According to the reaction, ratio between
Thus, number of moles of
=
The balanced equation between
According to the reaction, ratio between
Thus, number of moles of
Number of moles of
Put the value,
Molarity of
(e)
Interpretation:
The preparation of 500.0 mL
Concept Introduction:
Mole is SI unit which is used to measure the quantity of the substance. It is the quantity of a substance which contains same number of atoms as present in accurately 12.00 g of carbon-12 is known as mole.
Number of moles of a compound is defined as the ratio of given mass of the compound to the molar or molecular mass of the compound.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles to the volume of solution in L.
The mathematical expression is:
(e)

Answer to Problem 90E
Solution of
Explanation of Solution
From part (d) molarity of
Volume = 500.0 mL
The mathematical expression for calculating molarity is:
Rearrange the above formula in terms of number of moles:
Convert the given volume in mL to L.
Since, 1L=1000 mL
Thus, volume in L =
= 0.5 L
Now,
=
Molar mass of
Number of moles =
Mass of
Thus, solution of
Want to see more full solutions like this?
Chapter 4 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- The cobalt mu-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forwardThe cobalt mi-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forward3. Arrange the different acids in Exercise B # 2 from the strongest (1) to the weakest acid (10). 1. 2. (strongest) 3. 4. 5. 6. 7. 8. 9. 10 10. (weakest)arrow_forward
- Name Section Score Date EXERCISE B pH, pOH, pка, AND PKD CALCULATIONS 1. Complete the following table. Solution [H+] [OH-] PH РОН Nature of Solution A 2 x 10-8 M B 1 x 10-7 M C D 12.3 6.8 2. The following table contains the names, formulas, ka or pka for some common acids. Fill in the blanks in the table. (17 Points) Acid Name Formula Dissociation reaction Ka pka Phosphoric acid H₂PO₁ H3PO4 H++ H₂PO 7.08 x 10-3 Dihydrogen H₂PO H₂PO H+ HPO 6.31 x 10-6 phosphate Hydrogen HPO₁ 12.4 phosphate Carbonic acid H2CO3 Hydrogen HCO 6.35 10.3 carbonate or bicarbonate Acetic acid CH,COOH 4.76 Lactic acid CH₂CHOH- COOH 1.38 x 10 Ammonium NH 5.63 x 10-10 Phenol CH₂OH 1 x 10-10 Protonated form CH3NH3* 3.16 x 10-11 of methylaminearrow_forwardIndicate whether it is true that Co(III) complexes are very stable.arrow_forwardMnO2 acts as an oxidant in the chlorine synthesis reaction.arrow_forward
- In Potassium mu-dihydroxydicobaltate (III) tetraoxalate K4[Co2(C2O4)4(OH)2], indicate whether the OH ligand type is bidentate.arrow_forwardImagine an electrochemical cell based on these two half reactions with electrolyte concentrations as given below: Oxidation: Pb(s) → Pb2+(aq, 0.10 M) + 2 e– Reduction: MnO4–(aq, 1.50 M) + 4 H+(aq, 2.0 M) + 3 e– → MnO2(s) + 2 H2O(l) Calculate Ecell (assuming temperature is standard 25 °C).arrow_forward: ☐ + Draw the Fischer projection of the most common naturally-occurring form of aspartate, with the acid group at the top and the side chain at the bottom. Important: be sure your structure shows the molecule as it would exist at physiological pH. Click and drag to start drawing a structure. ✓arrow_forward
- For a silver-silver chloride electrode, the following potentials are observed: E°cell = 0.222 V and E(saturated KCl) = 0.197 V Use this information to find the [Cl–] (technically it’s the activity of Cl– that’s relevant here, but we’ll just call it “concentration” for simplicity) in saturated KCl.arrow_forwardA concentration cell consists of two Sn/Sn2+ half-cells. The cell has a potential of 0.10 V at 25 °C. What is the ratio of [Sn2+] (i.e., [Sn2+left-half] / [Sn2+right-half])?arrow_forwardElectrochemical cell potentials can be used to determine equilibrium constants that would be otherwise difficult to determine because concentrations are small. What is Κ for the following balanced reaction if E˚ = +0.0218 V? 3 Zn(s) + 2 Cr3+(aq) → 3 Zn2+(aq) + Cr(s) E˚ = +0.0218 Varrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





