Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 54P

(a)

To determine

The horizontal component of the force.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length L .

Introduction:

Under equilibrium condition net force acting on a static or a dynamic body sums up to zero. No net force acts on a body under the equilibrium condition.

The arch with the helium filled balloons is in equilibrium. The horizontal component of the force acting on the balloons is of same magnitude.

Write the expression for ith and (i1)th component of the horizontal force acting on the balloons.

  Ticosθi And T(i1)cosθ(i1)

Here Ti is the ith component of the horizontal force, T(i1) is the (i1)th component of the horizontal force and θ is the angle between the arch and the mass less rope.

Under equilibrium the net force is zero. The horizontal components of the forces are equal in magnitude.

Write the expression of force under equilibrium condition.

  Ticosθi=T(i1)cosθ(i1)TicosθT(i1)cosθ(i1)=0

Substitute TH for Ticosθ in the above equation.

  THT(i1)cosθ(i1)=0TH=T(i1)cosθ(i1)

Conclusion:

Thus, the horizontal component of the forces has equal magnitude.

(b)

To determine

The tension of the mass-less rope.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length L .

Introduction:

The arch with the helium filled balloons is in equilibrium. The horizontal component of the force acting on the balloons is of same magnitude.

Write the expression for Newton’s second law

  F=ma

Here, F is the force, m is the mass of the object and a is the acceleration of the body.

Under equilibrium condition all the vertical component of the force balances each other.

  Fy=0

Here, Fy is the summation of all the vertical component of the forces.

Write the expression for ith and (i1)th component of the vertical force acting on the balloons.

  Tisinθi And T(i1)sinθ(i1)

Under equilibrium condition

  F+TisinθiT(i1)sinθ(i1)=0F=T(i1)sinθ(i1)Tisinθi

Conclusion:

Thus, under equilibrium condition the relation between forces of tension is T(i1)sinθ(i1)Tisinθi

(c)

To determine

The, trigonometric identity tanθ0 equals to a constant value.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length L .

Introduction:

There are two supports at the two ends of the arch. Each supports equally shares the vertical component of the force.

Write the expression for vertical component of the force shared by the two supports.

  h=NF/2

Here, N is the number of balloons and F is the upward lift force.

Write the expression for the trigonometric identity tanθ0

  tanθ0=heightbase

Substitute NF/2 for height and TH for base in the above equation.

  tanθ0=NF/2TH=NF/2TH

Write the expression for symmetry of the angle θ .

  θ(N+1)=θ0

Here () sign indicates that tan is a odd function.

Write the expression for tanθ(N+1) .

  tanθ(N+1)=tanθ0=NF/2TH

Conclusion:

Thus, under equilibrium condition the expression for tanθ(N+1) is NF/2TH .

(d)

To determine

The, trigonometric identity tanθi and the y co-ordinate equals to a constant value.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

An arch is grounded at the both ends and helium filled balloons are placed at equal interval on the arch with a mass less rope of length L .

Introduction:

Under equilibrium condition the components of force due to tension of the rope balances each other.

Write the expression for TH

  TH=Ticosθi

Substitute T(i1)cosθ(i1) for Ticosθi in the above expression.

  TH=T(i1)cosθ(i1)

Write the expression for force.

  F=T(i1)sinθ(i1)Tisinθi

Divide both sides of the above expression by TH .

  FTH=(T(i1)sinθ(i1)Tisinθ)TH=tanθ(i1)tanθi

Rearrange the above equation.

  tanθi=tanθ(i1)F/TH

Substitute 1 for i in theabove expression.

  tanθ1=tanθ0F/TH

Substitute NF/2TH for tanθ0 in the above expression.

  tanθ1=(NF/2TH)(F/TH)=(N2)(F/TH)

Write the expression of length of rope between two consecutive balloons.

  Lin-between=LN+1

Here N is the number of balloons.

Write the expression for the horizontal coordinate of the ith balloons.

  xi=(L/N+1)J=0i1cosθj

Write the expression for the vertical coordinate of the ith balloons.

  yi=(L/N+1)J=0i1sinθj

Conclusion:

Thus, the horizontal coordinate of the ith balloon is (L/N+1)J=0i1cosθj and the vertical coordinate is (L/N+1)J=0i1sinθj .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
It is autumn. You look outside a window and see a maple leaf falling face down, in a straight vertical line. You estimate the speed of the leaf to be 25.77 cm/s. You then pick up the leaf and do measurements. It has a mass of 2.76 g and a cross sectional area of 76 square cm. You measure the density of air to be 1.298 kg m-³. What is the drag coefficient between the leaf and the air? (numerical value only) Number (Hint: For an object to fall with constant speed, it must be at 'terminal velocity'.)
During a step, the force on the hip joint is approximately 2.5 times the weight of the person taking the step. For a single step, the joint slides approximately 30 mm inside the socket. The coefficient of kinetic friction for synovial fluid that lubricates the joint is 0.003. 1. For a 60 kg person, what is the magnitude of the frictional force on the joint?
Tolerance is -+2%

Chapter 4 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY