Concept explainers
The expression for the change in length of the line segment.
Answer to Problem 52P
The expression for the change in length of the line segment is
Explanation of Solution
Given information:
The flow is symmetric about x axis.
Write the expression for the two-dimensional velocity field in the
Here, the horizontal speed is
Write the expression for the velocity component along x direction.
Here, the variable is
Write the expression for the velocity component along x direction.
Here, the variable is
Write the expression for the velocity in x direction in differential form.
Write the expression for the initial length.
Here, the initial location of A is
Write the expression for the final length.
Here, the final location of A is
Write the expression for the change in lengths.
Calculation:
Substitute
Integrate the Equation (VIII).
Substitute
Substitute
Substitute
Substitute
Conclusion:
The expression for the change in length of the line segment is
Want to see more full solutions like this?
Chapter 4 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
- In a 2D dimension incompressible flow , if the fluid velocity components are given by u = x-4y , v = -4x then stream function y is given byarrow_forwardprovide explanation and free body diagram for each part also commentarrow_forwardneed urgent help, thanks the question is related to advanced fluid mechanicsarrow_forward
- 4s-1, Given the velocity field V = Axî – Ayĵ, where A %3D (a) Sketch the velocity field. (you can do this by hand or use software of your choice)arrow_forwardhe velocity at apoint in aflued for one-dimensional Plow wmay be aiven in The Eutkerian coordinater by U=Ax+ Bt, Show That X Coordinates Canbe obtained from The Eulerian system. The intial position by Xo and The intial time to zo man be assumeal · 1. x = foxo, yo) in The Lagrange of The fluid parficle is designatedarrow_forwardThe velocity vector in a flow is given by :V=-3xi-4yj-7zk Determine the stream equation passing through a point L(4,2,3)arrow_forward
- Consider fully developed Couette flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary, as illustrated in the figure below. The flow is steady, incompressible, and two-dimensional in the XY plane. The velocity field is given by V }i = (u, v) = (v² )i +0j = V (a) Find out the acceleration field of this flow. (b) Is this flow steady? What are the u and v components of velocity? u= V² harrow_forwardFor a certain two-dimensional incompressible flow, velocity field is given by 2xy î - y?j. The streamlines for this flow are given by the family of curvesarrow_forwardPlease solve step by steparrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY