Concept explainers
Consider the following steady, two-dimensional velocity field:
Is there a stagnation point in this flow field? If so, where is it?
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
- 1. A Cartesian velocity field is defined by V = 2xi + 5yz2j − t3k. Find the divergence of the velocity field. Why is this an important quantity in fluid mechanics? 2. Is the flow field V = xi and ρ = x physically realizable? 3. For the flow field given in Cartesian coordinates by u = y2 , v = 2x, w = yt: (a) Is the flow one-, two-, or three-dimensional? (b) What is the x-component of the acceleration following a fluid particle? (c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?arrow_forwardThe stream function o in a two-dimensional flow field is given as 9 = 4x – 3y + 7xy (a) Prove that this flow field is irrotational and that it satisfies the continuity equation. Find the potential flow function P(x, y) for this flow field with boundary condition 0 = 0 at x = 2, y = 1. (b)arrow_forwardConsider the steady, two-dimensional velocity field given by V = (1.3 + 2.8x)i+ (1.5 – 2.8y)j. 6. Verify that this flow field is incompressible.arrow_forward
- Two velocity components of a steady, incompressible flow field are known: u = 2ax + bxy + cy2 and ? = axz − byz2, where a, b, and c are constants. Velocity component w is missing. Generate an expression for w as a function of x, y, and z.arrow_forward2- For a certain incompressible flow field it is suggested that the velocity components are given by the equations u = 2xy v = –x²y w = 0 Is this a physically possible flow field? Explain.arrow_forward1. For a velocity field described by V = 2x2i − zyk, is the flow two- or threedimensional? Incompressible? 2. For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope of the streamline passing through the point [2, 4] at t = 2. 3. Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the velocity field described by V = −xyi + 2y2jarrow_forward
- A fluid has a velocity field defined by u = x + 2y and v = 4 -y. In the domain where x and y vary from -10 to 10, where is there a stagnation point? Units for u and v are in meters/second, and x and y are in meters. Ox = 2 m. y = 1 m x = 2 m, y = 0 No stagnation point exists x = -8 m, y = 4 m Ox = 1 m, y = -1 m QUESTION 6 A one-dimensional flow through a nozzle has a velocity field of u = 3x + 2. What is the acceleration of a fluid particle through the nozzle? Assume u, x and the acceleration are all in consistent units. O 3 du/dt 9x + 6 1.5 x2 + 2x O Oarrow_forwardAnswer question 3 in the attached image pleasearrow_forward(a) A two-dimensional flow field is given byu = 5x 2 − 5y 2v = −10xy(i) Find the streamfunction ψ and velocity potential φ.(ii) Find the equation for the streamline and potential line which passesthrough the point (1, 1).arrow_forward
- Consider the two-dimensional incompressible velocity potentialϕ = xy + x 2 - y 2 . ( a ) Is it true that = ∆2 ϕ = 0, and, ifso, what does this mean? ( b ) If it exists, fi nd the streamfunction ψ ( x , y ) of this fl ow. ( c ) Find the equation of thestreamline that passes through ( x , y ) = (2, 1).arrow_forwardConsider the velocity field, ▼ — (x – 2y)i — (2x + y)j. What is the value of the velocity potential function at = the point (2,3)? Answer:arrow_forwardA two-dimensional incompressible velocity fi eld has u =K (1 - e - ay ), for x ≤ L and 0 ≤ y ≤ ∞. What is the mostgeneral form of υ ( x , y ) for which continuity is satisfi edand υ = υ 0 at y= 0? What are the proper dimensions forconstants K and a ?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY