EXCURSIONS IN MODERN MATH
EXCURSIONS IN MODERN MATH
5th Edition
ISBN: 9781323741559
Author: Tannenbaum
Publisher: PEARSON C
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 50E

A country consists of six states, with the state’s populations given in Table 4-39. The number of seats to be apportioned is M = 200 .

Table 4-39

State A B C D E F
Population 344,970 204,950 515,100 84,860 154,960 695,160

a. Find the apportionment under Webster’s method.

b. Find the apportionment under the Huntington-Hill method.

c. Compare the apportionments found in (a) and (b).

Blurred answer
Students have asked these similar questions
Module Code: MATH380202 3. (a) Let {} be a white noise process with variance σ2. Define an ARMA(p,q) process {X} in terms of {+} and state (without proof) conditions for {X} to be (i) weakly stationary and (ii) invertible. Define what is meant by an ARIMA (p, d, q) process. Let {Y} be such an ARIMA(p, d, q) process and show how it can also be represented as an ARMA process, giving the AR and MA orders of this representation. (b) The following tables show the first nine sample autocorrelations and partial auto- correlations of X and Y₁ = VX+ for a series of n = 1095 observations. (Notice that the notation in this part has no relationship with the notation in part (a) of this question.) Identify a model for this time series and obtain preliminary estimates for the pa- rameters of your model. X₁ = 15.51, s² = 317.43. k 1 2 3 4 5 6 7 Pk 0.981 0.974 0.968 akk 0.981 0.327 8 9 0.927 0.963 0.957 0.951 0.943 0.935 0.121 0.104 0.000 0.014 -0.067 -0.068 -0.012 Y₁ = VX : y = 0.03, s² = 11.48. k 1…
Let G be a graph with n ≥ 2 vertices x1, x2, . . . , xn, and let A be the adjacency matrixof G. Prove that if G is connected, then every entry in the matrix A^n−1 + A^nis positive.
Module Code: MATH380202 1. (a) Define the terms "strongly stationary" and "weakly stationary". Let {X} be a stochastic process defined for all t € Z. Assuming that {X+} is weakly stationary, define the autocorrelation function (acf) Pk, for lag k. What conditions must a process {X+) satisfy for it to be white noise? (b) Let N(0, 1) for t€ Z, with the {+} being mutually independent. Which of the following processes {X+} are weakly stationary for t> 0? Briefly justify your answers. i. Xt for all > 0. ii. Xo~N(0,) and X₁ = 2X+-1+ &t for t > 0. (c) Provide an expression for estimating the autocovariance function for a sample X1,..., X believed to be from a weakly stationary process. How is the autocor- relation function Pk then estimated, and a correlogram (or acf plot) constructed? (d) Consider the weakly stationary stochastic process ✗+ = + + +-1+ +-2 where {E} is a white noise process with variance 1. Compute the population autocorre- lation function Pk for all k = 0, 1, ....

Chapter 4 Solutions

EXCURSIONS IN MODERN MATH

Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Happy Rivers County consists of three towns:...Ch. 4 - Plainville Hospital has three wings A, B, and C....Ch. 4 - The small nation of Fireland is divided into four...Ch. 4 - The Republic of Galatia is divided into four...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - The small republic of Guayuru see Example 4.11...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Round each number using the Huntington-Hill...Ch. 4 - Round each number using the Huntington-Hill...Ch. 4 - In the 2010 apportionment of the U.S. House of...Ch. 4 - In the 2010 apportionment of the U.S. House of...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A country consists of six states, with the states...Ch. 4 - A country consists of six states, with the states...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - At the time of the 2000 Census, Californias...Ch. 4 - At the time of the 2000 Census, Californias...Ch. 4 - This exercise refers to the apportionment of...Ch. 4 - This exercise refers to the apportionment of...Ch. 4 - Exercises 61 and 62 are based on the following...Ch. 4 - Exercises 61 and 62 are based on the following...Ch. 4 - This exercise comes in two parts. Read Part I and...Ch. 4 - This exercise comes in two parts. Read Part I and...Ch. 4 - The small island nation of Margarita consists of...Ch. 4 - Prob. 66ECh. 4 - Prob. 67ECh. 4 - Prob. 68ECh. 4 - Prob. 69ECh. 4 - Consider the problem of apportioning M seats...Ch. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Lowndess Method. Exercises 73 and 74 refer to a...Ch. 4 - Prob. 74ECh. 4 - Prob. 75ECh. 4 - Explain why the Jeffersons method cannot produce...Ch. 4 - Explain why the Adamss method cannot produce a.the...Ch. 4 - Explain why the Websters method cannot produce...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY