EXCURSIONS IN MODERN MATH
EXCURSIONS IN MODERN MATH
5th Edition
ISBN: 9781323741559
Author: Tannenbaum
Publisher: PEARSON C
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 9E

The Interplanetary Federation of Fraternia consists of six planets: Alpha Kappa, Beta Theta, Chi Omega, Delta Gamma, Epsilon Tau, and Phi Sigma (A, B, C, D, E, and F for short). The federation is governed by the Inter-Fraternia Congress, consisting of 200 seats apportioned among the planets according to their populations. Table 4 27 _ gives the planet populations as percentages of the total population of Fraternia:

Table 4 2 7

Planet A B C D E F
Population percentage 11.37 8.07 38.62 14.98 10.42 16.54

a. Find the standard divisor (expressed as a percent of the total population).

b. Find the standard quota for each planet.

Blurred answer
Students have asked these similar questions
Module Code: MATH380202 3. (a) Let {} be a white noise process with variance σ2. Define an ARMA(p,q) process {X} in terms of {+} and state (without proof) conditions for {X} to be (i) weakly stationary and (ii) invertible. Define what is meant by an ARIMA (p, d, q) process. Let {Y} be such an ARIMA(p, d, q) process and show how it can also be represented as an ARMA process, giving the AR and MA orders of this representation. (b) The following tables show the first nine sample autocorrelations and partial auto- correlations of X and Y₁ = VX+ for a series of n = 1095 observations. (Notice that the notation in this part has no relationship with the notation in part (a) of this question.) Identify a model for this time series and obtain preliminary estimates for the pa- rameters of your model. X₁ = 15.51, s² = 317.43. k 1 2 3 4 5 6 7 Pk 0.981 0.974 0.968 akk 0.981 0.327 8 9 0.927 0.963 0.957 0.951 0.943 0.935 0.121 0.104 0.000 0.014 -0.067 -0.068 -0.012 Y₁ = VX : y = 0.03, s² = 11.48. k 1…
Let G be a graph with n ≥ 2 vertices x1, x2, . . . , xn, and let A be the adjacency matrixof G. Prove that if G is connected, then every entry in the matrix A^n−1 + A^nis positive.
Module Code: MATH380202 1. (a) Define the terms "strongly stationary" and "weakly stationary". Let {X} be a stochastic process defined for all t € Z. Assuming that {X+} is weakly stationary, define the autocorrelation function (acf) Pk, for lag k. What conditions must a process {X+) satisfy for it to be white noise? (b) Let N(0, 1) for t€ Z, with the {+} being mutually independent. Which of the following processes {X+} are weakly stationary for t> 0? Briefly justify your answers. i. Xt for all > 0. ii. Xo~N(0,) and X₁ = 2X+-1+ &t for t > 0. (c) Provide an expression for estimating the autocovariance function for a sample X1,..., X believed to be from a weakly stationary process. How is the autocor- relation function Pk then estimated, and a correlogram (or acf plot) constructed? (d) Consider the weakly stationary stochastic process ✗+ = + + +-1+ +-2 where {E} is a white noise process with variance 1. Compute the population autocorre- lation function Pk for all k = 0, 1, ....

Chapter 4 Solutions

EXCURSIONS IN MODERN MATH

Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Find the apportionment under Hamiltons method of...Ch. 4 - Happy Rivers County consists of three towns:...Ch. 4 - Plainville Hospital has three wings A, B, and C....Ch. 4 - The small nation of Fireland is divided into four...Ch. 4 - The Republic of Galatia is divided into four...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - The small republic of Guayuru see Example 4.11...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Jeffersons method of...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Adamss method of the...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Find the apportionment under Websters method of...Ch. 4 - Round each number using the Huntington-Hill...Ch. 4 - Round each number using the Huntington-Hill...Ch. 4 - In the 2010 apportionment of the U.S. House of...Ch. 4 - In the 2010 apportionment of the U.S. House of...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A small country consists of five states: A, B, C,...Ch. 4 - A country consists of six states, with the states...Ch. 4 - A country consists of six states, with the states...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - If the standard quota of state X is 35.41, then...Ch. 4 - If the standard quota of state Y is 78.24, then...Ch. 4 - At the time of the 2000 Census, Californias...Ch. 4 - At the time of the 2000 Census, Californias...Ch. 4 - This exercise refers to the apportionment of...Ch. 4 - This exercise refers to the apportionment of...Ch. 4 - Exercises 61 and 62 are based on the following...Ch. 4 - Exercises 61 and 62 are based on the following...Ch. 4 - This exercise comes in two parts. Read Part I and...Ch. 4 - This exercise comes in two parts. Read Part I and...Ch. 4 - The small island nation of Margarita consists of...Ch. 4 - Prob. 66ECh. 4 - Prob. 67ECh. 4 - Prob. 68ECh. 4 - Prob. 69ECh. 4 - Consider the problem of apportioning M seats...Ch. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Lowndess Method. Exercises 73 and 74 refer to a...Ch. 4 - Prob. 74ECh. 4 - Prob. 75ECh. 4 - Explain why the Jeffersons method cannot produce...Ch. 4 - Explain why the Adamss method cannot produce a.the...Ch. 4 - Explain why the Websters method cannot produce...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Hypothesis Testing - Solving Problems With Proportions; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=76VruarGn2Q;License: Standard YouTube License, CC-BY
Hypothesis Testing and Confidence Intervals (FRM Part 1 – Book 2 – Chapter 5); Author: Analystprep;https://www.youtube.com/watch?v=vth3yZIUlGQ;License: Standard YouTube License, CC-BY