CHEMISTRY THE CENTRAL SCIENCE >EBOOK<
14th Edition
ISBN: 9780136873891
Author: Brown
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4E
The concept of
a. If a system is at equilibrium, nothing is happening.
b. If a system is al equilibrium, the rate of the forward reaction is equal to the rate of the back reaction.
c. If a system is al equilibrium, the product concentration is changing over time [Section 4.1]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
CHEMISTRY THE CENTRAL SCIENCE >EBOOK<
Ch. 4.1 - If you have an aqueous solution that contains 1.5...Ch. 4.1 - If you were to draw diagrams representing aqueous...Ch. 4.2 - Prob. 4.2.1PECh. 4.2 - Classify the following compounds as soluble or...Ch. 4.2 - Yes or No: Will a precipitate form when solutions...Ch. 4.2 - a. What compound precipitates when aqueous...Ch. 4.2 - What happens when you mix an aqueous solution of...Ch. 4.2 -
Write the net ionic equation for the...Ch. 4.3 - Prob. 4.5.1PECh. 4.3 -
Imagine a diagram showing 10 Na + ions and 10 OH-...
Ch. 4.3 -
Which of these substances, when dissolved in...Ch. 4.3 - Consider solutions in which 0.1 mol of each of the...Ch. 4.3 -
Which is the correct ionic equation for the...Ch. 4.3 - For the reaction of phosphorous acid (H3PO3) and...Ch. 4.4 - Prob. 4.8.1PECh. 4.4 - What is the oxidation state of the boldfaced...Ch. 4.4 - Which of the following statements is true about...Ch. 4.4 - Prob. 4.9.2PECh. 4.4 - Which of these metals is the easiest to oxidize?...Ch. 4.4 - Which of the following metals will be oxidized by...Ch. 4.5 - Prob. 4.11.1PECh. 4.5 - Calculate the molarity of a solution made by...Ch. 4.5 - Prob. 4.12.1PECh. 4.5 - What is the molar concentration of K+ions in a...Ch. 4.5 - Prob. 4.13.1PECh. 4.5 -
How many grams of Na2SO4 are there in 15 mL of...Ch. 4.5 - Prob. 4.14.1PECh. 4.5 - What volume of 2.50 M lead(II) nitrate solution...Ch. 4.6 - How many milligrams of sodium sulfide are needed...Ch. 4.6 -
How many grams of NaOH are needed to neutralize...Ch. 4.6 - Prob. 4.16.1PECh. 4.6 - Prob. 4.16.2PECh. 4.6 - Practice Exercise 1 A mysterious white powder is...Ch. 4.6 - Prob. 4.17.2PECh. 4 - Prob. 1DECh. 4 - Prob. 1ECh. 4 - Aqueous solutions of three different substances,...Ch. 4 -
4 3 Use the molecular representations shown here...Ch. 4 - The concept of chemical equilibrium is very...Ch. 4 -
4 5 You are presented with a white solid and told...Ch. 4 - Which of the following ions will always be a...Ch. 4 - The labels have fallen off three bottles...Ch. 4 - Explain how a redox reaction involves electrons in...Ch. 4 - Prob. 9ECh. 4 - Prob. 10ECh. 4 -
4.11 Which data set, of the two graphed here,...Ch. 4 - You are titrating an acidic solution with a basic...Ch. 4 - State whether each of the following statements is...Ch. 4 - State whether each of the following statements is...Ch. 4 -
4.15 We have learned in this chapter that many...Ch. 4 - Prob. 16ECh. 4 -
4.17 Specify what ions are present in solution...Ch. 4 - Prob. 18ECh. 4 - Prob. 19ECh. 4 - Acetone. CH3COCH3, is a nonelectrolyte;...Ch. 4 -
4.21 Using solubility guidelines, predict whether...Ch. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - Which ions remain in solution, unreacted, after...Ch. 4 - Write balanced net ionic equations for the...Ch. 4 -
4.27 Separate samples of a solution of an unknown...Ch. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - Prob. 31ECh. 4 - Prob. 32ECh. 4 - State whether each of the following statements is...Ch. 4 - State whether each of the following statements is...Ch. 4 -
4.35 Label each of the following substances as an...Ch. 4 - An aqueous solution of an unknown solute is tested...Ch. 4 - Prob. 37ECh. 4 - Classify each of the following aqueous solutions...Ch. 4 - Complete and balance the following molecular...Ch. 4 - Write the balanced molecular and net ionic...Ch. 4 - Write balanced molecular and net ionic equations...Ch. 4 -
4.42 Because the oxide ion is basic, metal oxides...Ch. 4 -
4.43 Magnesium carbonate, magnesium oxide, and...Ch. 4 -
4.44 As K20 dissolves in water, the oxide ion...Ch. 4 - True or false: If a substance is oxidized, it is...Ch. 4 - Prob. 46ECh. 4 - Which region of the periodic table shown here...Ch. 4 - Determine the oxidation number of sulfur in each...Ch. 4 - Determine the oxidation number for the indicated...Ch. 4 - Determine the oxidation number for the indicated...Ch. 4 - Which element is oxidized, and which is reduced in...Ch. 4 - Which of the following are redox reactions? For...Ch. 4 -
4.53 Write balanced molecular and net ionic...Ch. 4 - Write balanced molecular and net ionic equations...Ch. 4 - Using the activity series (Table 4.5), write...Ch. 4 - Using the activity series (Table 4.5), write...Ch. 4 - The metal cadmium tends to form Cd2+ ions. The...Ch. 4 -
4.58 The following reactions (note that the...Ch. 4 - Is the concentration of a solution an intensive or...Ch. 4 - Prob. 60ECh. 4 - Calculate the molarity of a solution that contains...Ch. 4 -
4.62
Calculate the molarity of a solution made by...Ch. 4 - Prob. 63ECh. 4 - Prob. 64ECh. 4 - Prob. 65ECh. 4 -
4.66 The average adult male has a total blood...Ch. 4 -
4.67
How many grams of ethanol, CH2CH2OH should...Ch. 4 - Prob. 68ECh. 4 - Which will have the highest concentration of...Ch. 4 - Prob. 70ECh. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Prob. 73ECh. 4 - Prob. 74ECh. 4 - Prob. 75ECh. 4 - Prob. 76ECh. 4 - Prob. 77ECh. 4 - Prob. 78ECh. 4 - Prob. 79ECh. 4 - Prob. 80ECh. 4 - Prob. 81ECh. 4 - Prob. 82ECh. 4 - Some sulfuric acid is spilled on a lab bench You...Ch. 4 -
4.84 The distinctive odor of vinegar is due to...Ch. 4 - A 4.36-g sample of an unknown alkali metal...Ch. 4 -
4.86 An 8.65-g sample of an unknown group 2A...Ch. 4 - A solution of 100.0 mL of 0.200 M KOH is mixed...Ch. 4 -
4.88 A solution is made by mixing 15.0 g of...Ch. 4 - Prob. 89ECh. 4 - A 1.248-9 sample of limestone rock is pulverized...Ch. 4 - 4.91 Uranium hexafluoride, UF6, is processed to...Ch. 4 - The accompanying photo shows the reaction between...Ch. 4 - Prob. 93AECh. 4 -
4.94 You choose to investigate some of the...Ch. 4 -
4 95 Antacids are often used to relieve pain and...Ch. 4 -
4 96 The commercial production of nitric acid...Ch. 4 - Consider the following reagents: zinc, copper,...Ch. 4 - 98 Bronze is a solid solution of Cu(s) and Sn(s);...Ch. 4 - Prob. 99AECh. 4 - Prob. 100AECh. 4 -
4.101 Hard water contains Ca2+ , Mg2 + , and Fe2+...Ch. 4 - Tartaric acid. H2C4H4O6, has two acidic hydrogens....Ch. 4 - Prob. 103AECh. 4 - A solid sample of Zn(OH)2 is added to 0.350 L of...Ch. 4 - Prob. 105IECh. 4 - Prob. 106IECh. 4 - Prob. 107IECh. 4 - A fertilizer railroad car carrying 34,300 gallons...Ch. 4 - Prob. 109IECh. 4 - Prob. 110IECh. 4 - Prob. 111IECh. 4 - Prob. 112IECh. 4 - Prob. 113IECh. 4 - Prob. 114IECh. 4 -
4.115 Federal regulations set an upper limit of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- There are many ionic compounds that dissolve in water to a very small extent. One example is lead(II) chloride. When it dissolves an equilibrium is established between the solid salt and its component ions. Suppose you stir some solid PbCl2 into water. Explain how you would prove that the compound dissolves but to a small extent? Is the dissolving process product-favored or reactant-favored? pbcl2(s)pb2+(aq)+2cl(aq)arrow_forwardA common demonstration in chemistry courses involves adding a tiny speck of manganese(IV) oxide to a concentrated hydrogen peroxide (H2O2) solution. Hydrogen peroxide decomposes quite spectacularly under these conditions to produce oxygen gas and steam (water vapor). Manganese(IV) oxide is a catalyst for the decomposition of hydrogen peroxide and is not consumed in the reaction. Write the balanced equation for the decomposition reaction of hydrogen peroxide.arrow_forwardhat is meant by the driving force for a reaction? Give some examples of driving forces that make reactants tend to form products. Write a balanced chemical equation illustrating each type of driving force you have named.arrow_forward
- What is a combustion reaction? Are combustion reactions a unique type of reaction, or are they a special case of a more general type of reaction? Write an equation that illustrates a combustion reaction.arrow_forward4.13 For the following reactions, determine the value of x. 4C+S84CS2 mol S8 yields x mol CS2 CS2+3O2CO2+2SO2 mol CS2 yields x mol SO2 N2H4+3O22NO2+2H2O mol O2 yields x mol NO2 SiH4+2O2SiO2+2H2O 1.3103 mol SiH4 yields x mol H2Oarrow_forwardYou need to make a 0.300-M solution of NiSO4(aq). Calculate the mass of NiSO4 · 6H2O you should put into a 0.500-L volumetric flask.arrow_forward
- Polychlorinated biphenyls (PCBs) have been used extensively as dielectric materials in electrical transformers. Because PCBs have been shown to be potentially harmful, analysis for their presence in the environment has become very important. PCBs are manufactured according to the following generic reaction: C12H10+nCl2C12H10nCln.+nHCl This reaction results in a mixture of PCB products. The mixture is analyzed by decomposing the PCBs and then precipitating the resulting Cl asAgCl. a. Develop a general equation that relates the average value of n to the mass of a given mixture of PCBs and the mass of AgCl produced. b. A 0.1947-g sample of a commercial PCB yielded 0.4791 g of AgCl. What is the average value of n for this sample?arrow_forwardA student set up an experiment for six different trials of the reaction between 1.00-M aqueous acetic acid, CH3COOH, and solid sodium hydrogen carbonate, NaHCO3. CH3COOH(aq) + NaHCO3(s) NaCH3CO2(aq) + CO2(g) + H2O() The volume of acetic acid was kept constant, but the mass of sodium bicarbonate increased with each trial. The results of the tests are shown in the figure. (a) In which trial(s) is the acetic acid the limiting reactant? (b) In which trial(s) is sodium bicarbonate the limiting reactant? (c) Explain your reasoning in parts (a) and (b).arrow_forwardClassify each of the following reactions as (1) a redox reaction (2) a nonredox reaction or (3) cant classify because of insufficient information. a. A combination reaction in which one reactant is an element b. A decomposition reaction in which the products are all elements c. A decomposition reaction in which one of the products is an element d. A displacement reaction in which both of the reactants are compoundsarrow_forward
- A novel process for obtaining magnesium from sea water involves several reactions. Write a balanced chemical equation for each step of the process. (a) The first step is the decomposition of solid calcium carbonate from seashells to form solid calcium oxide and gaseous carbon dioxide. (b) The second step is the formation of solid calcium hydroxide as the only product from the reaction of the solid calcium oxide with liquid water. (c) Solid calcium hydroxide is then added to the seawater, reacting with dissolved magnesium chloride to yield solid magnesium hydroxide and aqueous calcium chloride. (d) The solid magnesium hydroxide is added to a hydrochloric acid solution, producing dissolved magnesium chloride and liquid water. (e) Finally, the magnesium chloride is melted and electrolyzed to yield liquid magnesium metal and diatomic chlorine gas.arrow_forwardlist at least three quantities that must be conserved in chemical reactions.arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Precipitation Reactions: Crash Course Chemistry #9; Author: Crash Course;https://www.youtube.com/watch?v=IIu16dy3ThI;License: Standard YouTube License, CC-BY