(a)
Interpretation:
The given statement is always true, always false or true in specific condition has to be explained.
Concept Introduction:
The first law of
(b)
Interpretation:
The given statement is always true, always false or true in specific condition has to be explained.
Concept Introduction:
Same as part (a).
(c)
Interpretation:
The given statement is always true, always false or true in specific condition has to be explained.
Concept Introduction:
Same as part (a).
(d)
Interpretation:
The given statement is always true, always false or true in specific condition has to be explained.
Concept Introduction:
Same as part (a).
(e)
Interpretation:
The given statement is always true, always false or true in specific condition has to be explained.
Concept Introduction:
Same as part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- 2. In which of the following reactions is there a significant transfer of energy as work from the system to the surroundings? This occurs if there is a change in the number of moles of gases. C(s) + O2(g) → CO2(g) CH4(g) + 2 O2(g) → CO2g) + 2 H2O(g) 2 C(s) + O2(g) → 2 CO(g) 2 Mg(s) + O2(g) → 2 MgO(s)arrow_forwardWhat are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forward
- When 1.000 g of ethylene glycol, C2H6O2, is burned at 25C and 1.00 atmosphere pressure, H2O(l) and CO2(g) are formed with the evolution of 19.18 kJ of heat. a Calculate the molar enthalpy of formation of ethylene glycol. (It will be necessary to use data from Appendix C.) b Gf of ethylene glycol is 322.5 kJ/mol. What is G for the combustion of 1 mol ethylene glycol? c What is S for the combustion of 1 mol ethylene glycol?arrow_forwardFor the reaction BaCO3(s) BaO(s) + CO2(g), rG = +219.7 kJ/mol-rxn. Using this value and other data available in Appendix L, calculate the value of fG for BaCO3(s).arrow_forwardWould the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forward
- Calculatethe work performed by a person whoexertsa force of 30 NN = newtonstomove abox 30metersif the force were a exactly parallel to the directionofmovement, and b45to thedirection of movement. Do the relative magnitudesmakesense?arrow_forwardExplain inyour own words why work done by the system is defined as the negative of pV, not positive pV.arrow_forwardA 220-ft3 sample of gas at standard temperature and pressure is compressed into a cylinder, where it exerts pressure of 2000 psi. Calculate the work (in J) performed when this gas expands isothermally against an opposing pressure of 1.0 atm. (The amount of work that can be done is equivalent to the destructive force of about 1/4 lb of dynamite, giving you an idea of how potentially destructive compressed gas cylinders can be if improperly handled!)arrow_forward
- What is the sign of the work when a refrigerator compresses a gas (the system) to a liquid during the refrigeration cycle?arrow_forwardCalculatethe work on the system whena piston is compressed by a pressure of 1780torr from 3.55 L to1.00 L.arrow_forwardDry ice is solid carbon dioxide; it vaporizes at room temperature and normal pressures to the gas. Suppose you put 21.5 g of dry ice in a vessel fitted with a piston (similar to the one in Figure 6.9 but with the weight replaced by the atmosphere), and it vaporizes completely to the gas, pushing the piston upward until its pressure and temperature equal those of the surrounding atmosphere at 24.0C and 751 mmHg. Calculate the work done by the gas in expanding against the atmosphere. Neglect the volume of the solid carbon dioxide, which is very small in comparison to the volume of the gas phase.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning