(a)
Interpretation:
The combustion equation for palmitic acid and glucose is given as.
Balance the reactions.
Concept Introduction:
The balanced reaction will be obtained by reaction of organic compound with oxygen where carbon is converted to carbon dioxide and hydrogen is converted to water.
Each atom of carbon will be converted to one molecule of carbon dioxide and two atoms of hydrogen will give one molecule of water.
(b)
Interpretation:
What will be the heat of combustion of plamitic acid and glucose in kcal /g? The unbalanced chemical equations are.
Concept Introduction:
The heat produced by one gram of a fuel is calculated as.
(c)
Interpretation:
The combustion equation for palmitic acid and glucose is given as.
Based on reaction and heat produced which is better fuel (source of energy) in terms of kcal /mol?
Concept Introduction:
The fuel which will produce more amount per mole will be considered as better fuel (source of energy).
(d)
Interpretation:
The combustion equation for palmitic acid and glucose is given as.
Based on reaction and heat produced which is better fuel (source of energy) in terms of kcal /g?
Concept Introduction:
The fuel which will produce more amount per gram will be considered as better fuel (source of energy).
Trending nowThis is a popular solution!
Chapter 4 Solutions
Student Solutions Manual for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th
- A rebreathing gas mask contains potassium superoxide, KO2, which reacts with moisture in the breath to give oxygen. 4KO2(s)+2H2O(l)4KOH(s)+3O2(g) Estimate the grams of potassium superoxide required to supply a persons oxygen needs for one hour. Assume a person requires 1.00 102 kcal of energy for this time period. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 1.00 102 kcal of heat, calculate the amount of oxygen consumed and hence the amount of KO2 required. The ff0 for glucose(s) is 1273 kJ/mol.arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardThe equation for the fermentation of glucose to alcohol and carbon dioxide is: C6H12O6(aq) 2C2H5OH(aq) + 2CO2(g) The enthalpy change for the reaction is 67 kJ. Is this reaction exothermic or endothermic? Is energy, in the form of heat, absorbed or evolved as the reaction occurs?arrow_forward
- Enthalpy a A 100.-g sample of water is placed in an insulated container and allowed to come to room temperature at 21C. To heat the water sample to 41C, how much heat must you add to it? b Consider the hypothetical reaction,2X(aq)+Y(l)X2Y(aq)being run in an insulated container that contains 100. g of solution. If the temperature of the solution changes from 21C to 31C, how much heat does the chemical reaction produce? How does this answer compare with that in part a? (You can assume that this solution is so dilute that it has the same heat capacity as pure water.) c If you wanted the temperature of 100. g of this solution to increase from 21C to 51C, how much heat would you have to add to it? (Try to answer this question without using a formula.) d If you had added 0.02 mol of X and 0.01 mol of Y to form the solution in part b, how many moles of X and Y would you need to bring about the temperature change described in part c. e Judging on the basis of your answers so far, what is the enthalpy of the reaction 2X(aq) + Y(l) X2Y(aq)?arrow_forwardBicycling Describe the energy conversions that occur when a bicyclist coasts down a long grade, then struggles to ascend a steep grade.arrow_forwardChlorine dioxide, ClO2, is a reddish yellow gas used in bleaching paper pulp. The average speed of a ClO2 molecule at 25C is 306 m/s. What is the kinetic energy (in joules) of a ClO2 molecule moving at this speed?arrow_forward
- 4-77 To convert 1 mol of iron(III) oxide to its elements requires 196.5 kcal: How many grams of iron can be produced if 156.0 kcal of heat is absorbed by a large-enough sample of iron(III) oxide?arrow_forwardAlthough the gas used in an oxyacetylene torch (Figure 5.7) is essentially pure acetylene, the heat produced by combustion of one mole of acetylene in such a torch is likely not equal to the enthalpy of combustion of acetylene listed in Table 5.2. Considering the conditions for which the tabulated data are reported, suggest an explanation.arrow_forwardCarbon dioxide from the atmosphere weathers, or dissolves, limestone (CaCO3) by the reaction CaCO3(s)+CO2(g)+H2O(l)Ca2(aq)+2HCO3(aq) Obtain H for this reaction. See Table 6.2 for the data.arrow_forward
- A newspaper article states that biomass has actually been used as an energy source throughout human history. Do you agree or disagree with this statement? Defend your answer.arrow_forward4.61 What is actually measured by the octane ratings of different grades of gasoline?arrow_forwardExplain the economic importance of conversions between different forms of energy and the inevitability of losses in this process.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning