The oxidation number of manganese in MnO 4 2 − is to be determined. Concept introduction: Oxidation of a species involves the loss of electrons by that species and reduction of a species involves the gain of electrons by that species. Oxidation number is defined as the formal charge an atom would gain if all the bonds attached to it in a compound are heterolytically cleaved. Oxidation number can be a positive or negative number but cannot be fractional.
The oxidation number of manganese in MnO 4 2 − is to be determined. Concept introduction: Oxidation of a species involves the loss of electrons by that species and reduction of a species involves the gain of electrons by that species. Oxidation number is defined as the formal charge an atom would gain if all the bonds attached to it in a compound are heterolytically cleaved. Oxidation number can be a positive or negative number but cannot be fractional.
The oxidation number of manganese in MnO42− is to be determined.
Concept introduction:
Oxidation of a species involves the loss of electrons by that species and reduction of a species involves the gain of electrons by that species.
Oxidation number is defined as the formal charge an atom would gain if all the bonds attached to it in a compound are heterolytically cleaved. Oxidation number can be a positive or negative number but cannot be fractional.
(b)
Interpretation Introduction
Interpretation:
The oxidation number of manganese in Mn2O3 is to be determined.
Concept introduction:
Oxidation of a species involves the loss of electrons by that species and reduction of a species involves the gain of electrons by that species.
Oxidation number is defined as the formal charge an atom would gain if all the bonds attached to it in a compound are heterolytically cleaved. Oxidation number can be a positive or negative number but cannot be fractional.
(c)
Interpretation Introduction
Interpretation:
The oxidation number of manganese in KMnO4 is to be determined.
Concept introduction:
Oxidation of a species involves the loss of electrons by that species and reduction of a species involves the gain of electrons by that species.
Oxidation number is defined as the formal charge an atom would gain if all the bonds attached to it in a compound are heterolytically cleaved. Oxidation number can be a positive or negative number but cannot be fractional.
B 1 of 2
Additional problems in preparation to Midterm #1:
1.) How can the following compounds be prepared using Diels-Alder reaction:
CH3 O
CN
(a)
(b)
CN
CH3
2.) What is the missing reagent in the shown reaction?
H3C
+ ?
H3C
H3C
CN
H3C
''CN
(၁)
H
3.) Write the products 1,2-addition and 1,4-addition of DBr to 1,3-cyclohexadiene.
Remember, D is deuterium, a heavy isotope of hydrogen. It reacts exactly like hydrogen.
4.) In the shown reaction, which will be the kinetic product and which will be the
thermodynamic product?
H3C
CI
H3C
HCI
H3C
+
5.) Which of the following molecules is aromatic?
(a)
(b)
(c)
H
6.) Which of the following molecules is aromatic?
(a)
(b)
(c)
7.) Write the mechanism for the shown reaction.
+
Ха
AICI 3
CI
8.) Suggest reagents that would convert benzene into the shown compounds.
CI
NO2
-8-6-6-8-a
(a)
(b)
(c)
(d)
(e)
(a)
SO3H
Br
The number of 2sp^2 hybridized atoms in is: A. 8; B. 6; C.4; D.2; E.0;
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change (Looseleaf)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.