![Chemistry: The Molecular Nature of Matter and Change (Looseleaf)](https://www.bartleby.com/isbn_cover_images/9780078130519/9780078130519_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The solution that has the highest molarity is to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The solution in beaker B has the highest molarity.
Explanation of Solution
Consider the particles present in the beaker as moles of solute.
The formula to calculate the molarity of solution in beaker is as follows:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Hence, the solution in beaker B has the highest molarity.
Molarity
(b)
Interpretation:
The solutions that have the same molarity are to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The solution in beaker A and F has the same molarity and solution in beaker C, D and E have the same molarity.
Explanation of Solution
Consider the particles present in the beaker as moles of solute.
The formula to calculate the molarity of solution in beaker is as follows:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
The solution in beaker A and F has the same molarity and the value of molarity is
Molarity
(c)
Interpretation:
Whether the mixture of solution A and C have a higher, a lower, or the same molarity as solution B is to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The mixture of solution A and C has a lower molarity as compared to solution B.
Explanation of Solution
The number of moles in solution A is
The formula to calculate the total volume is as follows:
Substitute
Substitute
The mixture of solution A and C has lower molarity as compared to solution B.
Molarity
(d)
Interpretation:
Whether the molarity when
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The molarity when
Explanation of Solution
The volume of solution D is
The volume of solution F is
Substitute
Substitute
The molarity of solution D is same as the molarity of solution F.
Molarity
(e)
Interpretation:
The solvent must be evaporated from solution E for it to have the same molarity as solution A is to be calculated.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
Explanation of Solution
The molarity of solution E should be equal to solution A. Therefore the molarity os solution should be
The formula to calculate the molarity of solution in beaker is as follows:
Rearrange the equation (3) to calculate the volume of solution evaporated.
Substitute
Therefore to get the same molarity as of the solution A,
Molarity
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change (Looseleaf)
- Transmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forwardNonearrow_forwardDraw the Lewis structure of C2H4Oarrow_forward
- a) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forwardDr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forward
- Experiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)